You are viewing a single thread.
View all comments View context
0 points

Decimals work fine to represent numbers, it’s the decimal system of computing numbers that is flawed. The “carry the 1” system if you prefer. It’s how we’re taught to add/subtract/multiply/divide numbers first, before we learn algebra and limits.

This is the flawed system, there is no method by which 0.999… can become 1 in here. All the logic for that is algebraic or better.

My issue isn’t with 0.999… = 1, nor is it with the inelegance of having multiple represetations of some numbers. My issue lies entirely with people who use algebraic or better logic to fight an elementary arithmetic issue.

People are using the systems they were taught, and those systems are giving an incorrect answer. Instead of telling those people they’re wrong, focus on the flaws of the tools they’re using.

permalink
report
parent
reply
2 points
*

This is the flawed system, there is no method by which 0.999… can become 1 in here.

Of course there is a method. You might not have been taught in school but you should blame your teachers for that, and noone else. The rule is simple: If you have a nine as repeating decimal, replace it with a zero and increment the digit before that.

That’s it. That’s literally all there is to it.

My issue lies entirely with people who use algebraic or better logic to fight an elementary arithmetic issue.

It’s not any more of an arithmetic issue than 2/6 == 1/3: As I already said, you need an additional normalisation step. The fundamental issue is that rational numbers do not have unique representations in the systems we’re using.

And, in fact, normalisation in decimal representation is way easier, as the only case to worry about is indeed the repeating nine. All other representations are unique while in the fractional system, all numbers have infinitely many representations.

Instead of telling those people they’re wrong, focus on the flaws of the tools they’re using.

Maths teachers are constantly wrong about everything. Especially in the US which single-handedly gave us the abomination that is PEMDAS.

Instead of blaming mathematicians for talking axiomatically, you should blame teachers for not teaching axiomatic thinking, of teaching procedure instead of laws and why particular sets of laws make sense.

That method I described to get rid of the nines is not mathematical insight. It teaches you nothing. You’re not an ALU, you’re capable of so much more than that, capable of deeper understanding that rote rule application. Don’t sell yourself short.


EDIT: Bijective base-10 might be something you want to look at. Also, I was wrong, there’s way more non-unique representations: 0002 is the same as 2. Damn obvious, that’s why it’s so easy to overlook. Dunno whether it easily extends to fractions can’t be bothered to think right now.

permalink
report
parent
reply
0 points
*

I don’t really care how many representations a number has, so long as those representations make sense. 2 = 02 = 2.0 = 1+1 = -1+3 = 8/4 = 2x/x. That’s all fine, we can use the basic rules of decimal notation to understand the first three, basic arithmetic to understand the next three, and basic algebra for the last one.

0.999… = 1 requires more advanced algebra in a pointed argument, or limits and infinite series to resolve, as well as disagreeing with the result of basic decimal notation. It’s steeped in misdirection and illusion like a magic trick or a phishing email.

I’m not blaming mathematicians for this, I am blaming teachers (and popular culture) for teaching that tools are inflexible, instead of the limits of those systems.

In this whole thread, I have never disagreed with the math, only it’s systematic perception, yet I have several people auguing about the math with me. It’s as if all math must be regarded as infinitely perfect, and any unbelievers must be cast out to the pyre of harsh correction. It’s the dogmatic rejection I take issue with.

permalink
report
parent
reply
0 points

0.999… = 1 requires more advanced algebra in a pointed argument,

You’re used to one but not the other. You convinced yourself that because one is new or unacquainted it is hard, while the rest is not. The rule I mentioned Is certainly easier that 2x/x that’s actual algebra right there.

It’s as if all math must be regarded as infinitely perfect, and any unbelievers must be cast out to the pyre of harsh correction

Why, yes. I totally can see your point about decimal notation being awkward in places though I doubt there’s a notation that isn’t, in some area or the other, awkward, and decimal is good enough. We’re also used to it, that plays a big role in whether something is judged convenient.

On the other hand 0.9999… must be equal to 1. Because otherwise the system would be wrong: For the system to be acceptable, for it to be infinitely perfect in its consistency with everything else, it must work like that.

And that’s what everyone’s saying when they’re throwing “1/3 = 0.333… now multiply both by three” at you: That 1 = 0.9999… is necessary. That it must be that way. And because it must be like that, it is like that. Because the integrity of the system trumps your own understanding of what the rules of decimal notation are, it trumps your maths teacher, it trumps all the Fields medallists. That integrity is primal, it’s always semantics first, then figure out some syntax to support it (unless you’re into substructural logics, different topic). It’s why you see mathematicians use the term “abuse of notation” but never “abuse of semantics”.

permalink
report
parent
reply

Maths teachers are constantly wrong about everything

Very rarely wrong actually.

the abomination that is PEMDAS

The only people who think there’s something wrong with PEMDAS are people who have forgotten one or more rules of Maths.

permalink
report
parent
reply
0 points

https://www.youtube.com/watch?v=lLCDca6dYpA

…oh wait I remember that Unicody user name. It’s you. Didn’t I already explain to you the difference between syntax and semantics until you gave up. I suggest we don’t do it again but instead, you review the thread.

permalink
report
parent
reply

those systems are giving an incorrect answer

When there’s an incorrect answer it’s because the user has made a mistake.

Instead of telling those people they’re wrong

They were wrong, and I told them where they went wrong (did something to one side of the equation and not the other).

permalink
report
parent
reply
-1 points

The system I’m talking about is elementary decimal notation and basic arithmetic. Carry the 1 and all that. Equations and algebra are more advanced and not taught yet.

There is no method by which basic arithmetic and decimal notation can turn 0.999… into 1. All of the carry methods require starting at the smallest digit, and repeating decimals have no smallest digit.

If someone uses these systems as they were taught, they will get told they’re wrong for doing so. If we focus on that person being wrong, then they’re more likely to give up on math entirely, because they’re wrong for doing as they were taught. If we focus on the limitstions of that system, then they have the explanation for the error, and an understanding of why the more complicated system is preferable.

All models are wrong, but some are useful.

permalink
report
parent
reply

not taught yet

What do you mean not taught yet? There’s nothing in the meme to indicate this is a primary school problem. In fact it explicitly has a picture of an adult, so high school Maths is absolutely on the table.

There is no method by which basic arithmetic and decimal notation can turn 0.999… into 1.

In high school we teach that they are the same thing. i.e. limits of accuracy, 1 isn’t the same thing as 1.000…, but rather 1+/- some limit of accuracy (usually 1/2). Of course in programming it matters if you’re talking about an integer 1 or a floating point 1.

If someone uses these systems as they were taught, they will get told they’re wrong for doing so

The only people I’ve seen get things wrong is people not using the systems correctly (such as the alleged “proof” in this thread, which broke several rules of Maths and as such didn’t prove anything), and it’s a teacher’s job to point out how to use them correctly.

permalink
report
parent
reply

Science Memes

!science_memes@mander.xyz

Create post

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don’t throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

Community stats

  • 12K

    Monthly active users

  • 3.6K

    Posts

  • 89K

    Comments