Of course the real-world reason is that it’s cheaper to shake the camera and set off a firecracker than to build a scale model just to paint a burn scar on the side.
But my thoughts were always that the in-universe reason had to do with the modular nature of federation starships.
In almost every episode, someone on a starship either suggests rerouting something, shunting power from one thing through another, bypassing something, compensating for one power source with another etc.
It seems that in space, being able to re-configure everything at a moment’s notice is important, and to be able to do that, you need easy, fast and direct, access to everything, therefore it needs to be immediately accessible, ergo high voltage power directly behind the controls.
The lack of seatbelts goes right along with it. If a console blows up in someone’s face, the next guy over needs to be able to quickly move down and take over. Don’t need to have to be fighting with seatbelts when nobody is steering the ship.
I don’t know why they don’t have safety glasses however…
At the same time, the gravity systems are designed by the best engineers in the Federation because they never, ever, give out, even when the rest of the ship is disintegrating.
I used to put that one in the same category as the man-in-suit gorn from TOS: budget/tech restrictions. But even in the latest SNW episode, we see someone waking up on a piece of wreckage with gravity still perfectly fine, while also getting several zero gravity scenes in the same episode.
I can’t remember which series this is from but I swear I remember them saying that the grav plating still holds a charge even in the event of total power failure. So even when the ship is disabled, gravity will maintain it’s hold for a period of time and then will slowly dissipate
They did that one time on Undiscovered Country. I guess that was a Klingon ship though.
Aritificial Gravity is probably part of the system that prevents everyone from going splat against the window Maneo style when they leave warp. Without inertial dampening you couldn’t move ships basically at all, so these systems are probably passive.
The inertial dampeners have issues all the time tho, but instead of everyone getting turned into red mist against a surface instantly it just causes them to sway a little and the camera to shake.
Inertial Dampeners failing means the ship can no longer remain at warp. (Ship would be fine, the meat bags of mostly water would not) Trek is usually pretty consistent about that part.
Survivor(star)ship bias: There are only episodes about minor issues with the inertial dampeners because major issues with the system would be very short and messy, and not make for good archival training footage for cadets or whatever the Watsonian reason for our Doyalist TV show may be.
Consoles are rigged with explosives to keep the lower decks in line.
In an episode of DS9 I heard some of the characters mention that they not only have deflector shields, but also “structural reinforcement shields.” So whatever science-fictiony force field is used to protect them from phasers and micrometeorites is also coursing through the skeletal structure of the ship.
When I heard this it immediately clicked in my mind: whenever the ship is hit with phaser fire the explosions happening inside are recoil from these internal shields. Perhaps the catastrophic damage prevented by structural reinforcement shields outweighs the localized damage of potentially fatal recoil.
That is my favorite explanation, anyway.
(This assumes all ships have structural reinforcement shields, and not just the Defiant.)
Voyager definitely has. I don’t remember it being mentioned in TNG or TOS though and Voyager is a newer ship than the Defiant…
Been around since at least TNG:
https://memory-alpha.fandom.com/wiki/Structural_integrity_field
When a console overloads, it’s way better to be thrown from the seat than to be burned and electrocuted. The lack of seat belts is a safety feature.
The explanation I’ve always had- I think this was from some official source but I could have just made it up.
Starfleet ships use EPS (Electro-Plasma System) to route power around the ship in the form of electro-plasma (a highly energized form of plasma). The warp core generates a lot of this plasma, which is piped through conduits to various devices around the ship. The EPS system and its related systems generate a lot of treknobabble about ‘scrubbing plasma conduits’ (apparently done from the outside using a field generator tool, but still boring), ‘replacing plasma relays’ (the valves that route plasma around, apparently they go bad frequently); problems like ruptured plasma conduits are dangerous and require immediate repair, etc.
Because this all works in a grid system, whenever the ship takes damage (especially energetic damage like weapons fire) the EPS conduits can carry energy spikes all over the ship. That’s why as the ship takes damage you see random small explosions and sparks all over the place- something hits or spikes the EPS grid and the shockwave ends up, well, wherever in the grid it ends up.
Of course many EPS conduits go to bridge terminals, especially as those terminals may have direct connections to the ship systems in question.
Of course in reality this would be seen as a horrible safety risk, and a bridge terminal that could probably run on a car battery shouldn’t have explosive plasma running through it especially when it can explode and harm the operator. In fact one could argue a safe starship should keep all EPS stuff as far away from any essential human-inhabited areas of the ship as possible (especially the bridge).
One counter to that might be that perhaps the consoles actually play some role in EPS switching, but that seems a bad tradeoff to me.
Easy. Electroplasma is very hot and very energetic. When it ruptures out of the conduit, The hot energetic plasma not only mechanically fractures the materials around it, but the plasma itself is a form of matter that will, when it’s energy is released and it cools, return to whatever state it would normally be at room temperature.
Surface ships use deuterium and anti-deuterium as fuel, deuterium is liquid at room temperature. Assuming the combined plasma is also deuterium, that would mean it is eventually condensing to liquid. So I imagine the interaction between the plasma and some other material would turn the other material into a sort of spongy texture, which is probably dark due to being scorched. Thus, I don’t think that’s rock at all. It is scorched material from around the plasma conduit, that has been melted and integrated with the plasma which then returned to a lower energy state, namely deuterium steam or liquid.
deuterium is liquid at room temperature
I think you are confusing Deuterium with heavy-water. Deuterium is a heavy isotope of Hydrogen, and so is gas at room temperature. Heavy water is water where the Hydrogen atoms of the water molecule are of the Deuterium isotope, and is liquid at room temperature.