User's banner
Avatar

Svante

Ardubal@mastodon.xyz
Joined
0 posts • 42 comments

Tja.

I’ll get the lighter fluid.

Direct message

@MattMastodon @Sodis Only about 40% of demand can be directly met from volatiles (wind and solar), i. e. no intermediate storage. The rest has to come from »backup« or »storage« or however you call it.

Current storage tech is still almost 100% pumped hydro. Batteries have not made a real dent there yet. But pumped hydro is not enough by far, even potentially, and batteries have a long way to go to be even as scalable as pumped hydro.

So, backup. The only clean, scalable backup is nuclear.

permalink
report
parent
reply

@Sodis @MattMastodon Nuclear power plants can quite easily do load following. It happens regularly e. g. in France. However, since it has the lowest running costs, other sources are usually cut first as far as possible.

permalink
report
parent
reply

@MattMastodon @Sodis Careful about labels. »Renewables« often includes biomass (which is just fast-track fossil tbh) and hydro (which is not so volatile). I’m talking about wind and solar specifically (volatiles).

40% is roughly the mean capacity factor of a good mix of volatiles. This is what you can directly feed to the user from the windmill/panel, without storage. You can expand a bit by massive overbuilding, but you can’t overbuild your way out of no wind at night.

permalink
report
parent
reply

@MattMastodon @Sodis Again: that demand is lower at night is already factored in. Roughly 40% of demand can be directly met by volatile sources. You may think nuclear is slow to deploy, but it’s still much faster than anything that doesn’t exist.

The gap is 60%. Gas is a fossil fuel. Varying use is mostly a euphemism. If you hurt industry, you won’t have the industry to build clean energy sources.

permalink
report
parent
reply

@MattMastodon @Sodis If you include construction and disposal (and transport and so on…) it is called lifecycle costs. First image shows that per energy produced (sorry german, »AKW neu« is new-built nuclear).

Uranium comes from all over the world. Second image shows the situation a few years ago. Niger is place 5, Russia place 7.

permalink
report
parent
reply

@MattMastodon @Sodis We’re going in circles. Volatile sources can only supply 40% of current demand for £50/MWh. The question is what fills the rest.

If storage, then the price goes up immediately by at least two conversion losses from/to storage, in addition to the cost of storage itself. Which doesn’t exist at the needed scalability.

Pointing to single projects is not meaningful, as we need to build a fleet anyway, which has its own dynamics.

permalink
report
parent
reply

@MattMastodon @Sodis

I’ll try to explain the 40%, sorry for the parts that you already know.

Electric energy is always produced at the same time (and »place« roughly) as it is consumed. (You can’t pump electricity into some reservoir to be consumed later, you always need a different energy form for storage.)

The problem with volatile sources is that they mostly (more than half) produce energy at the wrong time and/or the wrong place, and at other times produce nothing.

permalink
report
parent
reply

@MattMastodon @Sodis

⇒ Aside: the »place« problem is that you can’t build solar panels and wind turbines just anywhere, and they need a lot of space. E. g. Germany has now the problem that the wind blows much better in the north, but the industry is more in the south. So, you need a lot more/stronger transmission lines. Same for offshore wind: more wind at sea, but you need a lot of cables.

The more wind and solar you already have, the more the good places are already taken.

permalink
report
parent
reply

@MattMastodon @Sodis

⇒ (But at least we already have transmission tech, it is now just a question of materials and effort.)

So, assume that we have enough wind and solar that we can regularly produce 100% of demand from them. You can imagine peaks just touching the demand line at top demand.

(You could imagine more than that, but that would mean overbuilding, which hurts the economics quite badly while not making the end result much better.)

permalink
report
parent
reply

@MattMastodon @Sodis

⇒ Now the volatile supply line has valleys between the peaks. If you integrate over time and place, the supply line covers about 40% of demand in this situation.

That is /very rough/ and depends on a lot of factors, but my point is the same if it were 30% or 60%: where does the rest come from?

- Transmission: as already mentioned, we know how to transmit electric energy, it’s just material and effort. This smoothes out the »place« dimension.

permalink
report
parent
reply