like fuck, all you or I want out of these wandering AI jackasses is something vaguely resembling a technical problem statement or the faintest outline of an algorithm. normal engineering shit.
but nah, every time they just bullshit and say shit that doesn’t mean a damn thing as if we can’t tell, and when they get called out, every time it’s the “well you ¡haters! just don’t understand LLMs” line, as if we weren’t expecting a technical answer that just never came (cause all of them are only just cosplaying as technically skilled people and it fucking shows)
I was thinking about this after reading the P(Dumb) post.
All normal ML applications have a notion of evalutaion, e.g. the 2x2 table of {false,true}x{positive,negative}, or for clustering algorithms some metric of “goodness of fit”. If you have that you can make an experiment that has quantifiable results, and then you can do actual science.
I don’t even know what the equivalent for LLMs is. I don’t really have time to spare to dig through the papers, but like, how do they do this? What’s their experimental evaluation? I don’t seen an easy way to classify LLM outputs into anything really.
The only way to do science is hypothesis->experiment->analysis. So how the fuck do the LLM people do this?