Ok.
Try to get an image generator to create an image of a tennis racket, with all racket-like objects or relevant sport data removed from the training data.
Explain the concept to it with words alone, accurately enough to get something that looks exactly like the real thing. Maybe you can give it pictures, but one won’t really be enough, you’ll basically have to give it that chunk of training data you removed.
That’s the problem you’ll run into the second you want to realize a new game genre.
There are more forms of guidance than just raw words. Just off the top of my head, there’s inpainting, outpainting, controlnets, prompt editing, and embeddings. The researchers who pulled this off definitely didn’t do it with text prompts.
Obviously.
But at what point does that guidance just become the dataset you removed from the training data?
To get it to run Doom, they used Doom.
To realize a new genre, you’ll “just” have to make that game the old fashion way, first.
But at what point does that guidance just become the dataset you removed from the training data?
The whole point is that it didn’t know the concepts beforehand, and no it doesn’t become the dataset. Observations made of the training data are added to the model’s weights after training, the dataset is never relevant again as the model’s weights are locked in.
To get it to run Doom, they used Doom.
To realize a new genre, you’ll “just” have to make that game the old fashion way, first.
Or you could train a more general model. These things happen in steps, research is a process.