@MattMastodon @matthewtoad43 @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
This is just the fact: there are, at the current state, only two energy sources that can form the backbone of a decarbonized grid, and they have proved it, hydro and nuclear.
Hydro is not available everywhere, however, as it has really large area demand, and geological requirements.
And I repeat: nuclear /is/ very capable of load following.
And I repeat: batteries at the needed scalability don’t exist (yet?).
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis As I already mentioned, California has 2.5GW of batteries today. And credible half hourly models suggest that you only need hours of storage to get up to approximately 98%.
There are lots of ways to solve intermittency. Nuclear is one strategy that potentially works, but still needs short term storage - modern designs can vary load, but not quickly.
3x renewables plus a few hours storage is likely fine. So is a lot of nuclear. Hydrogen or iron-air *might* make the whole thing much cheaper, but indeed are immature technologies. More interconnectors are mature technology that always makes it easier, but are not enough on their own; dynamic demand is helpful and semi-proven.
But building “too much” renewables while we wait for nuclear is fine. Because most likely that nuclear will never be delivered. At least not in the UK. And as I understand it the supply chains don’t really overlap. But above all because *it’s the total carbon emitted that matters*. We’re on a deadline.
I see no obvious reason to expect that the UK can build large amounts of nuclear quickly, even if there was the political will to do so. Successive governments have tried and failed. On recent progress, by 2050, if we’re lucky, we might have 3 more 3GW plants running, which is nowhere near current demand, let alone future demand with electrification.
Even if the government meets its own target of 24GW by 2050, which seems extraordinarily unlikely given the slow progress so far, that will be a lot less than the total peak demand given electrification. So you still need storage.
So I’m not going to campaign to stop building renewables on the basis that one day we *might* build more nuclear.
Having too much renewables is *NOT* a problem, especially when compared to nuclear that will probably never materialise. Worst case, switching off wind and solar farms is much easier than switching off nuclear reactors. Best case, we can export that energy, use it for intermittent energy intensive industrial processes, or store it.
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis What you say about “40% volatiles” is a myth.
Currently we (UK) always run at least ~3GW of fossil fuels, as well as a surprisingly variable amount of nuclear, because of the inertia problem. That will be solved by 2025.
https://www.nationalgrideso.com/electricity-explained/how-do-we-balance-grid/what-inertia
Britain is up to 36% renewables *on average* over the last year, and still building fairly quickly. Plenty of countries have much higher proportions of renewables. But they also have other ways of dealing with it, e.g. Denmark’s trick was always much more energy trading.
Iceland is 86%, Norway is 76%. It can be done, though these figures are inflated by geothermal and hydro, which may not be viable for the UK. Sweden is 63%, but that includes a fair bit of biofuels. California is already up to 59%.
Intermittency is a problem, there are lots of ways to manage it. Nuclear is one of several options.
The amount of lithium batteries needed to reach 100% is probably ecologically unreasonable, although several academic studies do talk about this. So we probably do need some nuclear, unless iron-air batteries or hydrogen pan out rapidly. Nonetheless, the idea that there’s a ceiling of 40% is way out of date.
https://www.euronews.com/green/2023/01/20/which-european-countries-use-the-most-renewable-energy
https://www.govtech.com/smart-cities/california-hits-new-record-for-renewable-energy-generation
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
And again, nuclear can load follow /just fine/.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
There are already single events of more than a few hours where sunshine and wind are lacking. But that is only the immediate perspective; you need to integrate over at least several years to see the longer-term shortages that need to be handled as well. And that is quite obviously much more than a few hours. Therefore, I have some problems regarding such studies as credible.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
You seem to assume that only one reactor will be built at a time, and nothing learned. But that’s not how you do it, and not how France already did it, obviously.
I have a little problem understanding how one can acknowledge the success of the Messmer plan and at the same time claim it unrepeatable.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
Anyway, I don’t want anyone to stop building renewables, but I don’t want anyone to stop building nuclear either. We need every option.
(Even if nuclear is a safer bet.)