Maybe it’s like the dotcom bubble: there is genuinely useful tech that has recently emerged, but too many companies are trying to jump on the bandwagon.
LLMs do seem genuinely useful to me, but of course they have limitations.
We need to stop viewing it as artificial intelligence. The parts that are worth money are just more advanced versions of machine learning.
Being able to assimilate a few dozen textbooks and pass a bar exam is a neat parlor trick, but it is still just a parlor trick.
Unfortunately probably the biggest thing to come out of it will be the marketing aspect. If they spend enough money to train small models on our wants and likes it will give them tremendous amounts of return.
The key to using it in a financially successful manner is finding problems that fit the bill. Training costs are fairly high, quality content generation is also rather expensive. There are sticky problems around training it from non-free data. Whatever you’re going to use it for either needs to have a significant enough advantage to make the cost of training /data worth it.
I still think we’re eventually going to see education rise. The existing tools for small content generation adobe’s use of it to fill in small areas is leaps and bounds better than the old content aware patches. We’ve been using it for ages for speech recognition and speech generation. From there it’s relatively good at helper roles. Minor application development, copy editing, maybe some VFX generation eventually. Things where you still need a talented individual to oversee it but it can help lessen the workload.
There are lots of places where it’s being used where I think it’s a particularly poor fit. AI help desk chatbots, IVR scenarios, It says brain dead as the original phone trees and flow charts that we’ve been following for decades.
If GPT4o is still not what you would call AI, then what is? You can have conversations with it, the Turing test is completely irrelevant all of the sudden.
Hasn’t the Turing Test been irrelevant for a while now? Even before the new AI boom?
Artificial intelligence is a moving target. Every time a goal gets reached, they just move the goalposts, because “well, obviously this isn’t real intelligence”.
It’s a massive text predictor. It doesn’t solve problems, it applies patterns based on correlations it picked up during training. If someone talked about your topic online, it has been trained on those conversations. If a topic has two sides that don’t agree, chat gpt might respond in a way that is biased towards one side or the other and you can easily get it to “switch” to the other side with follow up prompts.
For what would be considered AI, think of the star trek computer or Data. The Star Trek computer could create simulations of warp core behaviour to push frontiers of knowledge or characters smart enough to defeat its own safeties (frankly, the computer was such a deus ex machina kinda thing that it was hard to suspend disbelief at times, like why did they even have humans doing the problem solving with computers that capable?). Data wouldn’t get confused about whether any counties in Africa start with K.
I don’t think the Turing test is an effective means of determining intelligence anyways. It came from a time when a conversational computer was barely thinkable. But I wouldn’t even say chat gpt is there yet, since you can tell if you ask it the right things. It is very useful, don’t get me wrong, like a very powerful search engine. But it’s not intelligent.
I could have full conversations with CleverBot a decade ago, but nobody was calling that AI then or even now. People generally recognized it for what it was - a heuristic model chatbot. These LLMs are just overgrown chatbots that still lack the capability of understanding anything it says to you other than how certain words relate to one another.
I can write a program that just replies “yes” to everything you say and you can have a conversation with that. Is that program AI?
“AI isn’t really AI and no one ever thought that AI was actually AI so it doesn’t matter if we call it AI” is the funniest level of tech bro cope these days.
We’re hitting logarithmic scaling with the model trainings. GPT-5 is going to cost 10x more than GPT-4 to train, but are people going to pay $200 / month for the gpt-5 subscription?
But it would use less energy afterwards? At least that was claimed with the 4o model for example.
4o is also not really much better than 4, they likely just optimized it among others by reducing the model size. IME the “intelligence” has somewhat degraded over time. Also bigger Model (which in tha past was the deciding factor for better intelligence) needs more energy, and GPT5 will likely be much bigger than 4 unless they somehow make a breakthrough with the training/optimization of the model…