Scientists have figured out how to harness Brownian motion – literally the thermal energy of individual molecules – to make electricity, by cleverly connecting diodes up to pieces of graphene, which are atom-thick sheets of Carbon. The team has successfully demonstrated their theory (which was previously thought to be impossible by prominent physicists like Richard Feynman), and are now trying to make a kind of micro-harvester that can basically produce inexhaustible power for things like smart sensors.

The most impressive thing about the system is that it doesn’t require a thermal gradient to do work, like other kinds of heat-harvesting systems (Stirling engines, Peltier junctions, etc.). As long as it’s a bit above absolute zero, there’s enough thermal energy “in the system” to make the graphene vibrate continuously, which induces a current that the diodes can then pump out.

Original journal link: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.108.024130

You are viewing a single thread.
View all comments View context
10 points

Is it? The fact it needs to be above absolute zero makes me think it’s instead just a clever way of harvesting the thermal energy of the environment without large apparatus.

permalink
report
parent
reply
8 points

It’s definitely not extracting energy from the vacuum. It’s converting latent heat energy into electrical energy due to clever engineering and the quirky properties of graphene.

permalink
report
parent
reply
2 points

Even that could be huge, if it’s scalable and cost effective.

permalink
report
parent
reply

Science

!science@lemmy.ml

Create post

Subscribe to see new publications and popular science coverage of current research on your homepage


Community stats

  • 736

    Monthly active users

  • 965

    Posts

  • 3.1K

    Comments

Community moderators