Quantum ‘yin-yang’ shows two photons being entangled in real-time::The stunning experiment, which reconstructs the properties of entangled photons from a 2D interference pattern, could be used to design faster quantum computers.
I don’t think there’s really any “changing” going on. The state of both entangled particles are unknown until one is measured, but I highly doubt that the act of measuring one suddenly determines the other’s state. They were already in those states, but before measurement it was an unknown variable which could be treated as a superposition. Once one is measured, then you know the state of the other entangled particle. Not because the act of measuring one affects the other (see: spooky action), but simply because the nature of entangled particles means the other would have to have to be the opposite of what you measured.
There’s no remote interaction, it’s simply mutual information
At least, that’s my take
Edit: this is why we can’t use entanglement for FTL communication. It just doesn’t work like that
Edit 2: seems my understanding was way off, but I’m leaving this comment up for the sake of context for the replies… Thanks to the people that responded for trying to clear things up. Quantum physics is weird.