You are viewing a single thread.
View all comments View context
1 point

Electric motors are between 95 and 98% efficient, while ICEs are in the 80’s on a good day.

permalink
report
parent
reply
1 point

You are aware that electric trains also use electric motors, just like electric cars do, right? And you are aware that electric cars rely on an electric battery while electric trains rely primarily on overhead electric power lines, are you?

That means cars require one extra component and an extra conversation of energy which trains don’t need. Every conversation of energy reduces efficiency of the final outcome. The more conversations, the less efficiency.

Trains use: power lines -> electric motor
Cars use: power lines -> electric battery -> electric motor

Furthermore, bigger machines can be built to be more efficient than smaller ones. So bigger motors can use (electric) fuel more efficiently than smaller motors.

permalink
report
parent
reply
2 points
*

I was responding to your assertion about EVs not being much better than ICEs.

permalink
report
parent
reply
1 point
*

I did not make any prior assertions. The post above was my first comment here.

To clarify, when you say ICE you are talking about trains, right? As in intercity express. And when you say EV you mean an electric car, correct?

I don’t understand why you argue that cars are more efficient than trains in this aspect. My argument is that since both machines use electric motors the motor efficiency can be nearly equal. Other factors probably favor a train more than a car if anything.

I don’t make a claim, but assume that even diesel locomotives might be a better choice than cars using only renewable energy, since the latter are idle most of the time, take up a lot of space, and require a lot of resources both in the car itself and in infrastructure. Surely something worht looking into.

permalink
report
parent
reply
3 points

Not to say trains are not more efficient than cars, because they are for a myriad of reasons. But electric motors scale relatively linear to my extent of knowledge, so usually it just ends up being that trains use many motors instead of one big motor.

permalink
report
parent
reply
1 point

Thanks for the info, I didn’t know how exactly this works, but I was aware that this factor is different for each device.

Thinking about it I guess that explains why small electric motor powered devices exist often while small combustion powered devices are rare? The only items I can come up with are forestry/gardening devices, tools for cooking and I guess lanterns. With the latter only using the heat/light and not actually moving anything.

permalink
report
parent
reply
4 points
*

That means cars require one extra component and an extra conversation of energy which trains don’t need.

Well, tbf, both trains and cars require converters (i.e. inverters like variable frequency drives or VFDs; or rectifiers) to match power between the local electric supply and traction motors, in the case of trains, or between the battery and traction motors, in the case of cars.

You need to be able to ramp up or down voltage or current (or both) depending on the drawing load that the motor sees at each and every moment of a trip (cars and trains). Then there is the possibility of your train jumping between different electric systems along its route, and so you need to have a way to accommodate those difference if you want to serve the most amount of passengers.

There are Battery Electric Multiple Units (BEMUs), too, out in the wild today that incorporate batteries in addition to electric service on trains (or just batteries alone), mostly in Japan and some in Europe. These are in the minority though compared to electric-supplied units.

Interestingly, there are some projects, most notably in Germany, where overhead lines are being introduced to trucks, fuzzying the differences in transportation modes even more.

I still get your point about the conversions, though. Batteries don’t have 100% Coulombic/Faraday efficiencies, meaning that they don’t charge up from 0-100% every charge cycle: you might start at 0-100%, but the next charge cycle might be 0-99.9999%, then 0-99.99%, then 0-99%, etc. This efficiency loss isn’t as great as the other losses you might find in the converters previously mentioned, or other resistive losses such as via Eddy currents in the motors/axles, demagnetization of the motors, etc.

Trains use: power lines -> electric motor Cars use: power lines -> electric battery -> electric motor

A better description of these processes would be:

Non-BEMU Trains: power lines -> converter -> electric motor (acceleration)

Non-BEMU Trains: electric motor -> converter -> power lines (deceleration)

Cars/BEMUs: power lines -> converter -> [battery -> converter -> electric motor] (charging [acceleration])

Cars/BEMUs: [electric motor -> converter -> battery] -> converter -> power lines ([deceleration] discharging)

Furthermore, bigger machines can be built to be more efficient than smaller ones. So bigger motors can use (electric) fuel more efficiently than smaller motors.

Totally. And trains that add batteries onboard can reduce the advantage that non-battery EMUs have, moreso resembling locomotives with big diesel engines and fuel tanks. I still find BEMUs better though because you can run the trains as married units, just like EMUs (and I suppose DMUs), but batteries can also be distributed along the rolling stock to allow for greater weight balancing. Idk if the major manufacturers like Siemens or General Electric have plans to design systems this way, but greater adoption may lead to more varied designs.

Hope this helps the discussion!

permalink
report
parent
reply
2 points

Well, tbf, both trains and cars require converters

Totally! My idea was that -> arrows represent the converters and to put it simply more arrows = more efficiency loss. But right, since power can also be injected back into the network, which is a good thing, there could be <-> arrows, or maybe <=> to better hightlight the bi-directionality:

power lines <=> electric motor

Since you mentioned putting power back into the grid:

I heard another potential use for car batteries would be using them to balance out local power fluctuations in the grid to make it more stable. Since cars stand still most of their life anyway, they might as well be connected to the grid whenever they’re parked. Not as a big energy reserve, since that wouldn’t be very efficient and capacity would be too low, but just to keep things more balanced which is a healthy thing for the power network. I suppose that also applies for train batteries.

permalink
report
parent
reply

Fuck Cars

!fuckcars@lemmy.world

Create post

A place to discuss problems of car centric infrastructure or how it hurts us all. Let’s explore the bad world of Cars!

Rules

1. Be Civil

You may not agree on ideas, but please do not be needlessly rude or insulting to other people in this community.

2. No hate speech

Don’t discriminate or disparage people on the basis of sex, gender, race, ethnicity, nationality, religion, or sexuality.

3. Don't harass people

Don’t follow people you disagree with into multiple threads or into PMs to insult, disparage, or otherwise attack them. And certainly don’t doxx any non-public figures.

4. Stay on topic

This community is about cars, their externalities in society, car-dependency, and solutions to these.

5. No reposts

Do not repost content that has already been posted in this community.

Moderator discretion will be used to judge reports with regard to the above rules.

Posting Guidelines

In the absence of a flair system on lemmy yet, let’s try to make it easier to scan through posts by type in here by using tags:

  • [meta] for discussions/suggestions about this community itself
  • [article] for news articles
  • [blog] for any blog-style content
  • [video] for video resources
  • [academic] for academic studies and sources
  • [discussion] for text post questions, rants, and/or discussions
  • [meme] for memes
  • [image] for any non-meme images
  • [misc] for anything that doesn’t fall cleanly into any of the other categories

Recommended communities:

Community stats

  • 4.2K

    Monthly active users

  • 931

    Posts

  • 25K

    Comments