You are viewing a single thread.
View all comments View context
27 points

The strengths of Machine Learning are in the extremely complex programs.

Programs no junior dev would be able to accomplish.

So if the post can misrepresent the issue, then the commenter can do so too.

permalink
report
parent
reply
31 points

Lol, no. ML is not capable of writing extremely complex code.

It’s basically like having a bunch of junior devs cranking out code that they don’t really understand.

ML for coding is only really good at providing basic bitch code that is more time intensive than complex. And even that you have to check for hallucinations.

permalink
report
parent
reply
16 points

To reiterate what the parent comment of the one you replied to said, this isn’t about chat GPT generating code, it’s about using ML to create a indeterministic algorithm, that’s why in the comic it’s only very close to 12 and not 12 exactly.

permalink
report
parent
reply
5 points

LLM are not good for that, but Machine Learning as a whole does not have that limitation.

permalink
report
parent
reply
0 points

ML is not good for coding, it is good for approximately solving very complex problems.

permalink
report
parent
reply
19 points

Yes that is what they are good at. But not as good as a deterministic algorithm that can do the same thing. You use machine learning when the problem is too complex to solve deterministically, and an approximate result is acceptable.

permalink
report
parent
reply
7 points

But can machine learning teach nerds not to ruin jokes? ;)

permalink
report
parent
reply
6 points

if it did, they wouldn’t be nerds anymore.

permalink
report
parent
reply
3 points

But like why would you use ML to do basic maths? Whoever did that is dumber than a junior dev 😝

permalink
report
parent
reply
2 points

I think it’s the nerds’ job to teach the ML to ruin jokes.

permalink
report
parent
reply
16 points

I think the exact opposite, ML is good for automating away the trivial, repetitive tasks that take time away from development but they have a harder time with making a coherent, maintainable architecture of interconnected modules.

It is also good for data analysis, for example when the dynamics of a system are complex but you have a lot of data. In that context, the algorithm doesn’t have to infer a model that matches reality completely, just one that is close enough for the region of interest.

permalink
report
parent
reply
15 points

I strongly disagree. ML is perfect for small bullshit like “What’s the area of a rectangle” - it falls on its face when asked:

Can we build a website for our security paranoid client that wants the server to completely refuse to communicate with users that aren’t authenticated as being employees… Oh, and our CEO requested a password recovery option on the login prompt.

permalink
report
parent
reply
9 points
*

I got interested and asked ChatGPT. It gave a middle-management answer.
Guess we know who’ll be the first to go.

permalink
report
parent
reply
3 points

The biggest high level challenge in any tech org is security and there’s no way you can convince me that ML can successfully counter these challenges

“oh but it will but it will!”

when

“in the future”

how long in the future

“When it can do it”

how will we know it can do it

“When it can do it”

cool.

permalink
report
parent
reply
3 points

You probably wreck in chess. :)

permalink
report
parent
reply

Programmer Humor

!programmerhumor@lemmy.ml

Create post

Post funny things about programming here! (Or just rant about your favourite programming language.)

Rules:

  • Posts must be relevant to programming, programmers, or computer science.
  • No NSFW content.
  • Jokes must be in good taste. No hate speech, bigotry, etc.

Community stats

  • 5K

    Monthly active users

  • 1.4K

    Posts

  • 33K

    Comments