You still have a crap-ton of atmosphere you have to get through, and the beams being reflected aren’t coherent. So the light reflected is subject to the inverse square law, which means that the energy diminishes as the inverse square of the distance. So the actually energy reaching the satellite would be minuscule. If you want to effectively use light to punch all the way through the atmosphere, you’ll need beam coherence.
The difference in the angles of the beams is the angle difference of a beam that came from an object 149,597,871 km away at a separation of 20 feet i.e. basically fuck-all. For this purpose I think they’re effectively (edit: coherent) parallel. And I think the atmospheric reduction would be significant but not defeating-to-the-purpose; I mean the sunbeam on its way in still had plenty of effectiveness after getting through the same atmosphere. If you did it on a cloudy day or something then yeah it wouldn’t work at all.
(Edit: Wait, I don’t understand optics; I mean parallel, not coherent. I don’t think coherence enters into it?)
The losses due to beam angle is nothing compared to the losses due to the inverse square law. This is why coherence is so critical for getting substantial quantity of photons from point A to point B. Lasers are defined by this difference, in that the light they produce is coherent. Because of this lasers are detraction limited, and have very low divergence at distance. Incoherent light sources like the sun have random amplitudes and phases in regards to time and space, so have very short coherence distances.
You could buy and build what this guy did, and probably get a few photons all the way through the atmosphere. The GEDI space laser fires with a power of 10mJ, and still results in a beam footprint of 25m. Granted the laser has to make a two way trip, but only a couple of hundred thousand photons are making it back to the sensor. So you would probably be able to see the glittering object using a high resolution camera, but there is no way that incoherent light could make any meaningful difference to something in space (considering, you know, its also being hit by radiation from the sun, you know radiation that hasn’t been filtered trough the atmosphere.)
Inverse square law is negligible, it’s already traveled from the Sun to earth, from the earth back up is a fraction of what it’s already traveled.
Divergence and lack of coherence are two very different things (as I fully realized only after I typed up my message, I guess).
Divergence is a result of the angle. If you’re producing light from a local point-source, you have to work very very hard to make sure the angle of the departing rays is as close as you can make it, and you’re still not going to get anywhere even remotely close to 20 feet divided by 149,597,871 km. That’s where all the insane dropoff in the examples you’re talking about is coming from. The rays from the sun, though, are effectively parallel by the time they reach the earth to points 20 feet separated.
The inverse-square law is a result of the power in the beam spreading out over a larger area and spreading out its energy output over a wider area. It’s just a way of expressing that if the beam has spread itself out from hitting 1’x1’ into hitting 10’x10’ at a distance 10 times greater, each square foot of the target will now only get 1/100 of the energy. It won’t get weaker in total, without being absorbed by something along the way; that would violate conservation of energy. In this case the beams are parallel, the target is still 20’x20’ plus some tiny tiny fraction, there is a little bit of absorption by the atmosphere but not enough to make it not bright. The sun’s light goes through the atmosphere and it’s still bright (somewhat brighter if you’re on a mountain or in space, with a lot more UV, but not like night and day.)
I don’t see that coherence fits into this particular part of it in any way; as far as I know, we use lasers for this type of purpose because of their low divergence and the coherence has nothing to do with it. The rays originally from the sun have no coherence and they still manage to make it all the way out here.
The problem is the size of the sun. If you could look at the sun (don’t, try the moon its approximately the same size in the sky), you see it has a relatively large angular size. Its not just a point in the sky.
So the problem, the rays from one point of the sun are almost parallel. But the rays from the different points of the sun are not. So they also aren’t parallel after your mirror. They spread in an angle similar to the size of the sun on the sky. And this is much larger than a satellite. So you cannot focus all energy on a satellite.
Yep this is 100% accurate. I got so carried away disagreeing with the idea that it’ll spread out again in inverse-square fashion like from a point source, that I completely missed the people telling me that it’ll spread slightly because of the size of the sun. Absolutely true.
Yeah this is completely wrong. Square law, the atmosphere absorption, non-coherence are all right on. You need a laser based in space to deliver real usable power.
The ruzzians are probably going to fly a space based sealed CO2 laser powered by radioactive generator.
Even if you took the entire face of the earth and converted it to mirrors, you would probably not have enough power to burn satellites. Simple demonstration…get a lens that is good for burning ants outside…now go inside your house and turn on your powerful TV. Focus it’s light on paper and see if you can burn it. Repeat with fire and with a projector.
get a lens that is good for burning ants outside…now go inside your house and turn on your powerful TV. Focus it’s light on paper and see if you can burn it. Repeat with fire and with a projector.
The light from the sun has traveled millions of km already, the fraction it has to travel from the earth back up the satellite is mathematically insignificant.
Your tv isn’t powerful… use something that has a similar function, like an actual light and it can work, but it will be affected by the inverse square law since the source is right there, unlike the sun.