The power density square law is for an emitting light source that emits in all directions. Since the incoming light is basically parallel that doesn’t really apply. If you were able to accurately track a satellite (a feat I’m sure is pretty hard) you would definitely vaporize it pretty quickly I’m talking under a minute since space is a good insulator.
It holds if the light spreads wider than the target. So also for directed light sources at large enough distances. Even a perfect mirror must spread the light in the same angle as it is incomming. Hence the beam would at least 3 km wide at the satellite. Therefore the satellite can only recieve a Illumination of ~65W/m^2 which is a few percent of the normal sun brightness of 1300 W/m^2.
Another way to look at it, the mirrors cant make the sun seem brighter only larger. From the tower you see a large solid angle around you the mirror, therefore, it can seem like you are at the surface of the sun. However, fro. the position of a satellite, the power plant only takes a small solid angle, so it seems like a “smaller” sun. Assuming 400 MW and 1 kW/m^2 (at surface) solar power, it has an area of 400000 m^2, so a solid angle of 4.5e-6 sr from 300km while the sun has 70e-6 sr. So ten times smaller, therefore weaker. Note however here i did not account for attenuation in the atmosphere
Light doesn’t have to spread wider than a target or else you wouldn’t be able to have telescopes or magnifine glasses. Each panel in unison can act like a giant magnifine glass. The difference in power density would be the ratio of the distance of sun to earth squared vs (sun to earth + earth to satellite) squared which is basically negligible. Where do you get the 3km wide beam? Suns rays are almost parallel.
Yes, you are right, considering the rays emerge from a point. And yes, each panel or all panels in unison can act like a magnifying glass. However, if they focus the light on a point at the height of the satellite, they work like a magnifying glass, or telescope with a focal length of the satellite – power plant distance, so at least 300 km. Considering the angular size of the sun, this telescope would lead to an image of the sun, the size of 3 km.
No sun rays are not parallel. If you looked at the sun (don’t, it will burn your eyes), would you see it as a point or a disc? As a disc. Why? Because even looking in slightly different directions, you see the sun. So the rays from the sun are not almost parallel, the rays from other stars are, they look point like.
Two interesting images for you: A solar eclipse viewed trough tree leaves: You can see the partial sun disc by using the small free points in the tree cover as pinhole cameras. Sure, the tree cover does not have lenses, but they only make the image sharper, not smaller. In this image the focal length is only the height of the trees and the image is already a few cm across. It also shows that the rays from the sun are not parallel. If they were, all rays going through the small free spots in the tree cover would end up at the same spot on the ground.
International Space Station, ISS, flying in front of the Sun: As the sun and the satellite are far away, we can assume that the angular size of the original sun and the virtual sun image are approximately the same when viewed from the power plant. Hence, this image shows how the mirrors would form an image of the sun, where only a small part of it hits the sun.
As the sun is much larger than the ISS, the angle of rays which come from the sun is much larger than the angle of rays which hit the ISS.
Keep in mind that atmospheric interference would likely scatter the light enough to be ineffective
No that’s not true only about 30% of light energy scatters when traveling through the atmosphere to earth and certain wavelengths are almost completely absorbed in the way down. So on the way back up it should be a high portion make it to the satellite I would imagine 80%. Even worse case scenario 200 megawats shinning on a satellite would vaporize it almost instantly.
But the photons made it through the atmosphere in the first place to be collected by the reflectors. Is there just not enough energy left to make it back out before cooling off?
That’s the assumption, yes. But if the beams are coherent (like a laser) atmospheric interference would be a lot smaller.
The real question is whether the light would be coherent, which I lean towards no on.
So you’re saying we should weaponize the James Webb space telescope instead? :D
There is still a power density square law, but with focused energy you are only integrating power flux across a portion of the sphere’s surface instead of the whole thing.
It depends how the actual system was set up if they used flat reflectors then yeah it applies but the difference in power would be the ratio of the distance from earth to the sun vs the distance of E to S +mirror to satellite which would be negligible. If you had a parabolic mirror you could get no loss in power. The power density square law only apply because the area the light is being distributed over is growing at a square ratio to radius but if the beams are parallel the area doesn’t grow.