You are viewing a single thread.
View all comments View context
56 points

Except the length of a second is different on the moon because of relativity. So even utc is wrong.

permalink
report
parent
reply
26 points

UTC doesn’t become wrong, you can either just accept a different pace of the clock, i.e. earth ppl will be ever so late to a meeting or it’s just a different kind of timezone conversion. Better would be to have a single time based on the reference frame of the center of the galaxy and everyone keep there time relative to that.

permalink
report
parent
reply
8 points

just use a time based on light?, like meter is based on the speed fo light in the vaccum, or use atomic based times?, like how long take for the hydrogen atom todo something bla bla bla

permalink
report
parent
reply
22 points

That’s actually what’s different on the moon. Relativity and all that means that time itself actually flows differently on the moon than it does on earth.

The actual problem they’re working to solve is around timekeeping and GPS applications in different reference frames, but it’s hard to make a short headline about.

permalink
report
parent
reply
10 points

https://en.wikipedia.org/wiki/Second

The second […] is defined by taking the fixed numerical value of the caesium frequency, ΔνCs, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s−1.

Do not matter for relativity though, always same change.

permalink
report
parent
reply
1 point

Yep, and the math gives different results based on if you’re on the moon or on earth.

permalink
report
parent
reply
-2 points
*

No the second is still 9192631770 hyperfine transitions of Cs-133 on the moon and that’s the same length of time at least unless you want to severely annoy physicists by implying that the laws of nature aren’t constant throughout the universe. It’s just that from our perspective it looks like time is flowing differently there.

permalink
report
parent
reply
4 points

You are correct that if you are on thee moon and have a cs-133 atom with you is second will take that many transitions. And if you do the same thing on Earth, a second will take the same number of transitions.

But things get weird when you are on earth and observe a cs-133 atom that is on the moon. Because you are in different reference frames, you are traveling at different speeds and are in different gravity wells time is moving at different rates. This means that a cs atom locally will transition a different number of times in a second from your point of view on Earth vs one you are observing on the moon.

And it would all be reversed if you were on the Moon observing a clock back on the Earth.

They already have to account for this with GPS satellites. They all have atomic clocks on them but they don’t run at the same speed as clocks that are on the ground. The satellites are moving at a great speed and are further from the center of the earth than us, so the software that calculates the distance from your phone to the satellite have to use Einstein’s equations to account for the change in the rate of time.

Relativity is weird.

permalink
report
parent
reply
1 point

It’s like it’s relative…

permalink
report
parent
reply

Programmer Humor

!programmer_humor@programming.dev

Create post

Welcome to Programmer Humor!

This is a place where you can post jokes, memes, humor, etc. related to programming!

For sharing awful code theres also Programming Horror.

Rules

  • Keep content in english
  • No advertisements
  • Posts must be related to programming or programmer topics

Community stats

  • 3.4K

    Monthly active users

  • 1K

    Posts

  • 37K

    Comments