"Accomplished by a team at the Huazhong University of Science and Technology and posted 30 minutes ago.

Why this is evidence: The LK-99 flake slightly levitates for both orientations of the magnetic field, meaning it is not simply a magnetized piece of iron or similar ‘magnetic material’. A simple magnetic flake would be attracted to one polarity of the strong magnet, and repelled by the other. A diamagnet would be repelled under either orientation, since it resists and expels all fields regardless of the polarity.

Caveats There is no way to verify the orientation of the strong magnet in this video, also, there are yet to be published experimental measured values of this sample. Diamagnetism is a property of superconductors but without measured and verified data, this is just suggestive of a result.

Take-away If this synthesis was indeed successful, then this material is easy enough to be made by labs other than the original research team. I would watch carefully for results out of Argonne National Lab, who are reported to be working on their own synthesis of a sample.

This overall corroborates two independent simulation studies that investigated the original Korean authors claim about material and crystal structure, and both studies supported the claims.

Lawrence Berkeley National Lab: https://arxiv.org/pdf/2307.16892.pdf Shenyang National Lab: https://arxiv.org/pdf/2307.16040.pdf "

You are viewing a single thread.
View all comments View context
12 points
*

Thanks for the explanation. So, this means we are another step closer to quantum computers for example?

I’m trying to grasp on this concept and how we could see this in our daily lives. Better batteries? I thought about that because they get hot when charging but not sure if it’s because of the resistance. Going into standard circuits means we’ll have better SoCs? better integrated circuits? Faster computers or phones?

Im trying to think about a daily life application but maybe it won’t have a direct impact on that area, maybe it’s more about facilitating research that will eventually turn into daily life stuff?

permalink
report
parent
reply
8 points

Better batteries, yeah. That’s down the line. We will also generate heat during the actual use of any devices. But, less.

It also could become the most efficient commercial batteries, but I expect the cost will be prohibitive. Sending electricity always has a loss, but it doesn’t through a superconductor, so these will have a lot of uses at power generation sites, both reducing heat and losslessly storing it (until it enters the traditional grid).

It won’t directly transfer to faster tech or anything like that, but it helping quantum computing could do so indirectly.

Definitely it’s more of a facilitating research kinda thing. You can’t play with superconductors in a lab in a cost efficient way, but this could let you.

Also maglevs and MRI’s directly use superconductors currently, so that’s a direct use, lower cost MRI’s and incredibly fast trains.

permalink
report
parent
reply
7 points

Heat is a huge barrier to increasing clock speeds, so a room temperature and pressure superconductor would actually fairly directly translate to major performance gains in computing.

permalink
report
parent
reply
4 points

While true, that’d only be for a superconducting CPU. I doubt this material can both superconduct and act as a transistor, and even if it can, I highly doubt you could pack in anywhere near the amount we have in standard CPUs. So while we might replace a standard power supply with a superconducting one, and reduce heat that way, I don’t see any direct computing boosts from this. We could superconduct everything around a CPU, have superconducting wires, but the heat from a CPU is generated in the silicon.

It’ll be pretty nice to have 100% efficient PSUs, though. Definitely some gains there, just not the same revolutionary ones seen elsewhere.

permalink
report
parent
reply

This is where my mind went. Wondered if the reduction in heat would allow further overclocking/defaults on both CPU and GPUs. I don’t know that much about the actual hardware and how it works though.

permalink
report
parent
reply
2 points

Got it. So it’ll eventually lead to develop or improve daily stuff. I hope this material becomes a reality.

permalink
report
parent
reply
7 points
*

A conductor with no resistance is a big deal for many electrical applications. Electrical resistance is often a big part of design. Removing that aspect changes things significantly. Electrical power losses and the size of conductors can be greatly reduced.

I’ve read lots of unsubstantiated claims about superconductors. A solution has to be producible in quantity at a reasonable cost. Otherwise it’s not going to be a breakthrough. I mean we currently have expensive and bulky superconductor solutions, but they’re limited to applications where it’s reasonable such as MRI machines and particle accelerators.

An inexpensive room temperature superconductor would make the most difference in tech sectors such as power transmission, electromechanical, and power electronics. These are areas where power loss due to circuit resistance is a big part of design. The impact would be minimal for computing and logic. There may be areas where power loss can be reduced, but logic relies on semi-conductors which must have resistance to function, it’s in the name. The term “semi” implies resistance.

permalink
report
parent
reply
1 point

Would this potential superconductor work in devices like phones and laptops? Would it lead to more efficient operation?

permalink
report
parent
reply
3 points

Would this potential superconductor work in devices like phones and laptops? Would it lead to more efficient operation?

If inexpensive it could be used in power components for consumer electronics like phones and laptops, but wouldn’t make a huge difference since most of the power consumption occurs in chips and displays where superconductors wouldn’t apply. Though it could lead to some reduction in size and better efficiency. Battery operated devices are considered low power. High power applications are where superconductors offer the most benefit.

permalink
report
parent
reply
5 points

I think it’ll be first used in energy transmission.

If it’s actually a thing.

permalink
report
parent
reply
4 points

One thing that you’ll definitely observe in daily life is the development of fusion reactors. They’re significantly safer than regular nuclear reactors (which run on fission), and also a lot cheaper (theoretically). The current downside to fusion reactors is that up until this point, it usually takes up more energy to run it than the energy that gets produced. So in other words, it doesn’t actually generate enough energy to make it worth building. Most of the energy spent is trying to keep the magnets in the reactor cold enough to function. Since room temperature superconductors should function at room temperature, there will be no need to keep them cold, so a lot of the energy spent keeping the magnets cold will become unnecessary. This will significantly improve the development of fusion reactors, to the point where it is possible that we may even see fusion reactors on our energy grid in our lifetimes. Basically, if this claim is true, you can expect that energy costs will become virtually negligible and the world will almost completely run on renewable energy

permalink
report
parent
reply
2 points

Well I really hope this is real then and more importantly it translates to cheap, clean energy

permalink
report
parent
reply

Technology

!technology@lemmy.world

Create post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


Community stats

  • 18K

    Monthly active users

  • 11K

    Posts

  • 506K

    Comments