A tentative but less nebulous step toward superconductor-fueled electronics.
Superconductors basically means you can run your PC’s processor at 1% of its current energy draw. So now take a mobile phone processor, recreate it with superconductors, and you suddenly have a device that can do a massive amount of computations for years on a single AA battery
Not just that, but you also have things like MRI, CT, and PET imaging in the medical world that would suddenly not need liquid helium and nitrogen for operation. Scientific instruments like NMR and high resolution FT-MS machines will stop using all the liquid helium and nitrogen. It will save are rapidly disappearing helium resources and allow for that to be used for other things.
Then there is mass transit that can be developed. The list goes on.
The 127C is the critical temperature. With other superconductors, if you get the material below the critical temperature, its starts superconducting. From the descriptions I’ve seen, the meaning of critical temperature is the same with this material, so it should superconduct at 23C just fine, presuming it is a superconductor.
“Room temperature” in this context means “above 0 °C”.