You are viewing a single thread.
View all comments View context
12 points

Yeah sure, coal plants obviously have to go. But why not invest in sustainable energy production?

Nuclear waste cannot just be buried, unless you don’t care about polluting huge areas with radioactivity. In Germany, there have been decades long debates where to store nuclear waste and even to this day there hasn’t been found a good storage for the waste we produced in the 70ies. And this shit costs billions of euros that the company profiting of the plant doesn’t have to pay but that in turn society has to pay.

permalink
report
parent
reply
17 points

Wyoming is investing heavily in wind even with the understanding that current turbine designs ultimately cost money to repair and operate as opposed to being a solution that pays for itself. The conversion of a coal plant to nuclear is part of a long term strategy to reduce environmental impact. They’re taking a long view approach that solar and wind can’t in the short term do what they need it to do but that continued use of coal, at all, even just for the short term, is untenable. Meanwhile, Wyoming is ALSO investing in research on using nuclear byproducts to generate electricity. I have a lot of complaints about Wyoming and how chill they are with the alt-right but I have to commend them that their energy strategy for their state basically reflects what we all need to be doing

permalink
report
parent
reply
2 points

It is a lot harder to get wind to turn a coal power plant turbine.

permalink
report
parent
reply
5 points

I see fission as a transitional technology, like CFL light bulbs vs LED lighting.

The transition has been struggling for 60 years for political reasons.

permalink
report
parent
reply
1 point

Yes, I get that. But I think we should just keep in mind that it is no sustainable or long-term solution. Since many people have started talking positively about nuclear energy in the last few years, I think it is important to remind everyone of the problems that arise with it.

permalink
report
parent
reply
7 points

That is simply not true, storage is a solved problem, and the reason for not having locations is a political problem. NIMBY (Not in my back yard) keeps the world from having permanent storage locations, not science.

permalink
report
parent
reply
3 points

Can you show me any evidence for that? I’m really curious how we could develop a technology to safely store nuclear waste for millions of years. I mean, on that time scale you’d even factor in changes in geology and all kinds of other factors. Sure, there are definitely people who say that “it should be fine”. But how can you reliably model geology on that time scale? You simply cannot. So I would definitely disagree with your statement that storage is a solved problem.

permalink
report
parent
reply
7 points
*

Honestly yes! I made a strong bold statement its only fair to ask for references.

https://www.youtube.com/watch?v=aDUvCLAp0uU

https://www.youtube.com/watch?v=F8x_E1pMSHE

https://www.cambridge.org/core/journals/mrs-bulletin/article/abs/glassceramics-for-nuclearwaste-immobilization/6C69A3D12C516F1B98DE91A9675F9411

https://www.cambridge.org/core/journals/mrs-bulletin/article/abs/studies-of-ancient-glass-and-their-application-to-nuclearwaste-management/B11A67361CE124E7A8A84415545A112A

https://www.lyellcollection.org/doi/abs/10.1144/GSL.SP.2004.236.01.04

https://www.ingentaconnect.com/content/sgt/gt/2000/00000041/00000006/4106186

So here are a few general video’s along with a few interesting papers regarding storing HLW as/in glass-ceramics. The academic research and discussion of this immobilization methods is very robust so lots of stuff you can read on that subject.

BUT we dont have to store Fission HLW if we reprocess it and run it in conjunction with other reactor types like LIFTR. Much of the remaining waste produced in currently operating reactors is still mostly unused and at most 5-10% of the total material is used up. We can pass that through a breeder reactor and convert U238 to P239 which turns “useless” naturally occurring non fissile uranium into fissile plutonium.

https://en.wikipedia.org/wiki/Plutonium-239

https://www.youtube.com/watch?v=IzQ3gFRj0Bc

https://www.youtube.com/watch?v=TaC2pvDMPc0&t=603s

So, my point is that assuming we keep using low enrichment uranium to power current BWR/PWR reactors we have an existing solution for the waste (which if ALL of the worlds HLW was combined would not even fill a professional stadium) that easily takes care of all the waste created since we started production.

BUT all that waste is actually fuel if we recycle/reprocess it and we can burn up another large percentage of that waste and its remaining elements are generally shorter lived forms of waste.

https://www.sciencedirect.com/science/article/abs/pii/S0301421510007263

permalink
report
parent
reply

Technology

!technology@beehaw.org

Create post

A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.

Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.

Subcommunities on Beehaw:


This community’s icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

Community stats

  • 2.8K

    Monthly active users

  • 2.9K

    Posts

  • 53K

    Comments