Intel’s 916,000-pound shipment is a “cold box,” a self-standing air-processor structure that facilitates the cryogenic technology needed to fabricate semiconductors. The box is 23 feet tall, 20 feet wide, and 280 feet long, nearly the length of a football field. The immense scale of the cold box necessitates a transit process that moves at a “parade pace” of 5-10 miles per hour. Intel is taking over southern Ohio’s roads for the next several weeks and months as it builds its new Ohio One Campus, a $28 billion project to create a 1,000-acre campus with two chip factories and room for more. Calling it the new “Silicon Heartland,” the project will be the first leading-edge semiconductor fab in the American Midwest, and once operational, will get to work on the “Angstrom era” of Intel processes, 20A and beyond.

I don’t know why, but I’ve never thought of the transport logistics involved in building a semiconductor fabrication plant.

You are viewing a single thread.
View all comments
21 points

This is why ultrasized cargo airships need to be a thing. Just sling that bad boy underneath a kilometre long hydrogen dirigible and fly it to its destination.

permalink
report
reply
21 points

Or, historically, when you’re building a new factory, the first thing you do is build a rail connection right next to it

permalink
report
parent
reply
9 points

This is also good, but, on the other hand, airships are awesome

permalink
report
parent
reply
2 points

A rail line that can handle a 280 foot piece of cargo would be heaven for high speed adoption with how straight it would have to be.

permalink
report
parent
reply
5 points

Oh the humanity

permalink
report
parent
reply
2 points

if you look at the history of what happened to each Zeppelin airship you get a really good idea why it’s a bad idea.

LZ1: damaged during initial flight, repaired and flown two more times before investors backed out causing the ship to be sold for scrap.

LZ2: suffered double engine failure and crashed into a mountain. While anchored to the mountain awaiting repairs a storm destroyed it beyond repair.

LZ3: built from salvaged parts of LZ2. Severally damaged in storm. After LZ4’s destruction LZ3 was repaired and was accepted by the German military who eventually scrapped it.

LZ4: suffered from chronic engine failure. While repairing the engines a gust of wind blew the ship free of its mooring and struck a tree causing the ship to ignite and burn to the ground.

LZ5: destroyed in a storm.

LZ6: destroyed in its hanger by fire.

LZ7: destroyed after crashing in a thunderstorm.

LZ8: destroyed by wind.

LZ9: this one actually worked and survived for three years before being decommissioned.

LZ10: caught on fire and destroyed after a gust of wind blew its mooring line into itself.

LZ11: destroyed while attempting to move the ship into it’s hanger

LZ12 & LZ13: both flew successful careers before being decommissioned a few years later.

LZ14: destroyed in a thunderstorm.

LZ15: destroyed during an emergency landing.

LZ16: was stolen by the French. ***

LZ17: decommissioned after the war.

LZ18: exploded during its test flight.

LZ19: damaged beyond repair during an emergency landing.

LZ129: the Hindenburg.

LZ127: retired and scrapped after flying over a million miles.

LZ130: flew 30 flights before being dismantled for parts to aid in the war effort

The problem is with airships and aerostats in general is you need a massive balloon just to lift a small amount of weight but the larger you make it the more susceptible to weather it ends up being. With the amount of surface area a balloon that’s a 1km long has you would have to spend a considerable amount of energy just to stop it from blowing away in the wind, as inefficient as it is the truck may actually use less fuel because of this.

permalink
report
parent
reply
5 points

That said, the Zeppelin NT has, as far as I know, a perfect flight record.

https://en.wikipedia.org/wiki/Zeppelin_NT

We’ve made a lot of advances since the early 20th century, believe it or not. I don’t think using semirigid airships as both cargo transports and “satellites” needed for temporary communications purposes over a large area such as a disaster zone where cell communication has been lost would be out of the question now.

permalink
report
parent
reply
2 points

The biggest advancement they made was making it smaller. Zeppelin NTs are a fraction of the size of what Ferdinand von Zeppelin was designing in his day. Because of their smaller and the switch to helium Zeppelin NTs has a miniscule payload capacity at 4200 pounds. To put that into perspective that’s the same payload capacity as a Ford F250. Even with their reduced surface area and modern flight controllers controllers the Zeppelin NTs still haven’t solved the weather issue as they are restricted from flying in winds greater than 22MPH and when VFR is not available.

permalink
report
parent
reply
1 point

Yes because the 1920s-1940s are famously indicative of reliable hydrogen based airship transport

permalink
report
parent
reply
7 points

Sure, throw out a perfectly good idea because technology hasn’t advanced at all in the last 100 years.

permalink
report
parent
reply
3 points
*

They aren’t very good, and they probably can’t be. You’re limited by the laws of physics on what they can carry for their enormous size. The Hindenberg was the largest of them, but including passengers and crew together, it carried less than 100 people. They scale really, really poorly.

We can improve on old dirigibles somewhat with lighter weight materials and engines. We’re ultimately limited by the volume of the lifting gas, and we’re just not going to add that much more capacity. Even if someone figured out a vacuum dirigible (which would be very vulnerable to a puncture), it’d only improve things marginally. It’s an interesting engineering challenge, though.

One thing where dirigibles might be useful is windmill blades. Blades aren’t that heavy, but they can’t get much bigger while being transported on highways. Constructing the blades on site is another option, so we’ll see which one wins.

Science and engineering aren’t magic that makes everything better over time always, and people need to stop acting like it does. There are physical limits that we can’t breach. As another example, we haven’t significantly improved on the drag coefficient of designs by Porsche or the Chrysler Airflow back in the 1930s. There was a design Mercedes came up with a while back that’s based on the boxfish that did reduce it further, but its frontal cross section is so high that it doesn’t matter, anyway. (It’s also ugly as fuck, but that’s a different matter.)

permalink
report
parent
reply

Technology

!technology@lemmy.world

Create post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


Community stats

  • 18K

    Monthly active users

  • 11K

    Posts

  • 505K

    Comments