32 bit CPU’s having difficulty accessing greater than 4gb of memory was exclusively a windows problem.
You still had a 4GB memory limit for processes, as well as a total memory limit of 64GB. Especially the first one was a problem for Java apps before AMD introduced 64bit extensions and a reason to use Sun servers for that.
Yeah I acknowledged the shortcomings in a different comment.
It was a duct take solution for sure.
Your other posts didn’t reply to your claim that it is a Windows only problem. Linux did and some distros (Raspberry Pi) have the same limitations as Windows 95.
32 bit Windows XP got PAE in 2001, two years after Linux. 64 bit Windows came out in 2005.
Interesting! Do you have a link to a write up about this? I don’t know anything about the windows memory manager
Only slightly related, but here’s the compiler flag to disable an arbitrary 2GB limit on x86 programs.
Finding the reason for its existence from a credible source isn’t as easy, however. If you’re fine with an explanation from StackOverflow, you can infer that it’s there because some programs treat pointers as signed integers and die horribly when anything above 7FFFFFFF gets returned by the allocator.
It’s a silly flag to use as it only works when running 32-bit Windows applications on 64-bit Windows, and if you’re compiling from source, you should also have the option to just build a 64-bit binary in the first place. It made a degree of sense years ago when people actually used 32-bit Windows sometimes (which was usually just down to OEMs installing the wrong version on prebuilt PCs could have supported 64-bit) if you really wanted to only have one binary or you consumed a precompiled third party library and had to match its architecture.
Intel PAE if the answer, but it still came with other issues, so 64 was still the better answer.
Also the entire article comes down to simple math.
Bits is the number of digits.
So like a 4 digit number maxes out at 9999 but an 8 digit number maxes out at 99 999 999
So when you double the number of digits, the max size available is exponential. 10^4 bigger in this case. It just sounds small because you’re showing that the exponent doubles.
10^4 is WAY smaller than 10^8
It was actually 3gb because operating systems have to reserve parts of the memory address space for other things. It’s more difficult for all 32bit operating systems to address above 4gb just most implemented additional complexity much earlier because Linux runs on large servers and stuff. Windows actually had a way to switch over to support it in some versions too. Probably the NT kernels that where also running on servers.
A quick skim of the Wikipedia seems like a good starting point for understanding the old problem.
Wow they just…disabled all RAM over 3 GB because some drivers had hard coded some mapped memory? Jfc