In this context, yes, because of the cancellation on the fractions when you recover.
1/3 x 3 = 1
I would say without the context, there is an infinitesimal difference. The approximation solution above essentially ignores the problem which is more of a functional flaw in base 10 than a real number theory issue
This seems to be conflating 0.333...3
with 0.333...
One is infinitesimally close to 1/3, the other is a decimal representation of 1/3. Indeed, if 1-0.999...
resulted in anything other than 0, that would necessarily be a number with more significant digits than 0.999...
which would mean that the failed to be an infinite repetition.
The context doesn’t make a difference
In base 10 --> 1/3 is 0.333…
In base 12 --> 1/3 is 0.4
But they’re both the same number.
Base 10 simply is not capable of displaying it in a concise format. We could say that this is a notation issue. No notation is perfect. Base 10 has some confusing implications