iT’s JuSt StAtIsTiCs
But it is, and it always has been. Absurdly complexly layered statistics, calculated faster than a human could.
This whole “we can’t explain how it works” is bullshit from software engineers too lazy to unwind the emergent behavior caused by their code.
But it is, and it always has been. Absurdly complexly layered statistics, calculated faster than a human could.
Well sure, but as someone else said even heat is statistics. Saying “ML is just statistics” is so reductionist as to be meaningless. Heat is just statistics. Biology is just physics. Forests are just trees.
Yeah, but the critical question is: is human intelligence statistics?
Seems no, to me: a human lawyer wouldn’t, for instance, make up case law that doesn’t exist. AI has done that one already. If it had even the most basic understanding of what the law is and does, it would have known not to do that.
This shit is just megahal on a gpu.
I agree with your first paragraph, but unwinding that emergent behavior really can be impossible. It’s not just a matter of taking spaghetti code and deciphering it, ML usually works by generating weights in something like a decision tree, neural network, or statistical model.
Assigning any sort of human logic to why particular weights ended up where they are is educated guesswork at best.
You know what we do in engineering when we need to understand a system a lot of the time? We instrument it.
Please explain why this can’t be instrumented. Please explain why the trace data could not be analtzed offline at different timescales as a way to start understanding what is happening in the models.
I’m fucking embarassed for CS lately.
This whole “we can’t explain how it works” is bullshit
Mostly it’s just millions of combinations of y = k*x + m
with y = max(0, x)
between. You don’t need more than high school algebra to understand the building blocks.
What we can’t explain is why it works so well. It’s difficult to understand how the information is propagated through all the different pathways. There are some ideas, but it’s not fully understood.
??? it works well because we expect the problem space we’re searching to be continuous and differentiable and the targetted variable to be dependent on the features given, why wouldn’t it work
It’s totally statistics, but that second paragraph really isn’t how it works at all. You don’t “code” neural networks the way you code up website or game. There’s no “if (userAskedForThis) {DoThis()}”. All the coding you do in neutral networks is to define a model and training process, but that’s it; Before training that behavior is completely random.
The neural network engineer isn’t directly coding up behavior. They’re architecting the model (random weights by default), setting up an environment (training and evaluation datasets, tweaking some training parameters), and letting the models weights be trained or “fit” to the data. It’s behavior isn’t designed, the virtual environment that it evolved in was. Bigger, cleaner datasets, model architectures suited for the data, and an appropriate number of training iterations (epochs) can improve results, but they’ll never be perfect, just an approximation.
But the actions taken by the model in the virtual environments can always be described as discrete steps. Each modification to the weights done by each agent in each generation can be described as discrete steps. Even if I’m fucking up some of the terminology, basic computer architecture enforces that there are discrete steps.
We could literally trace each command that runs on the hardware that runs these things individually if we wanted full auditability, to eat all the storage space ever made, and to drive someone insane. Have none of you AI devs ever taken an embedded programming/machine language course? Never looked into reverse engineering of compiled executables?
I understand that these things work by doing these steps millions upon millions of times, but there has to be a better middle ground for tracing these things than “lol i dunno, computer brute forced it”. It is a mixture of laziness, and unwillingness to allow responsibility to negatively impact profits that result in so many in the field to summarize it as literally impossible.
Tensorflow has some libraries that help visualize the “explanation” for why it’s models are classifying something (in the tutorial example, a fireboat), in the form of highlights over the most salient parts of the data:
Neural networks are not intractable, but we just haven’t built the libraries for understanding and explaining them yet.