27 points
*

In 1938, Orson Welles adapted H.G. Wells’s “The War of the Worlds” for the radio, apparently causing mass hysteria and a major part of the continental United States to believe that a martian invasion had occurred.

“A few policemen trickled in, then a few more. Soon, the room was full of policemen and a massive struggle was going on between the police, page boys, and CBS executives, who were trying to prevent the cops from busting in and stopping the show. It was a show to witness.”[26]

During the sign-off theme, the phone began ringing. Houseman picked it up and the furious caller announced he was mayor of a Midwestern town, where mobs were in the streets. Houseman hung up quickly, “[f]or we were off the air now and the studio door had burst open.”[4]: 404

How many deaths had we heard of? (Implying they knew of thousands.) What did we know of the fatal stampede in a Jersey hall? (Implying it was one of many.) What traffic deaths? (The ditches must be choked with corpses.) The suicides? (Haven’t you heard about the one on Riverside Drive?)

This was a year after he adapted Shakespeare’s Julius Caesar to be set in Nazi Germany.

permalink
report
reply
14 points
*

Wasn’t that just one newspaper reporting it which was more or less just an advert for the play?

permalink
report
parent
reply
14 points
*

No. In fact, I quoted the first-hand accounts of the people in charge of the broadcast.

Yes, there may have been less of a panic than as advertised, but it wasn’t a gross (or intentional) distortion. The drama was also only broadcast once.

The offices of the city of Trenton, New Jersey, a location within the dramatization, had its communications paralyzed for 3 hours due to the calls made to ask the city well.

permalink
report
parent
reply
17 points

Rasputin having such a massive cock that Boney M had to made a song about it.

permalink
report
reply
4 points

But the ladies begged, “Don’t you try to do it, please!”

permalink
report
parent
reply
1 point

Oh, that rasputin song. Guy was in a situation where he had to make himself appear more manly.

permalink
report
parent
reply
14 points
7 points

Risky click but worth it.

permalink
report
parent
reply
2 points

W H A T

permalink
report
parent
reply
2 points

… Whyyyyy?!

permalink
report
parent
reply
32 points

Probably the one about tin cans and can openers. IIRC, can opener was invented decades after the tin

permalink
report
reply
3 points

How did they open cans before then?

permalink
report
parent
reply
11 points
*

Originally tin cans were large things meant for military campaigns, so they used a chisel or similar large stabby thing.

permalink
report
parent
reply
5 points

I actually don’t know. Presumably with a knife

permalink
report
parent
reply
43 points

To be fair that makes a lot more sense than it happening the other way around

permalink
report
parent
reply
8 points

For a few years you just had to find a sharp rock

permalink
report
parent
reply
38 points

Benjamin Franklin got the flow of electricity wrong.

permalink
report
reply
24 points
*

Yep. It was 50/50 given that he only knew it was moving from between two points somehow. Tough luck, Benny. (Specifically, he was the one that figured out charge is conserved)

Now we all have to deal with circuit diagrams that don’t match what’s actually happening inside the components, which confuses at least me when I have to think about electrochemical reactions, semiconductors and/or induction.

Edit: He actually didn’t have complete circuits at that time, it was all static experiments where charges were moved manually. Fixed.

permalink
report
parent
reply
6 points

Can you eli5? Or like I’m a dumb dumb idiot? Please.

Electricity is one of those things I so badly want to understand and just seem to not be able to.

permalink
report
parent
reply
2 points

Okay, so I see someone else already did an effortpost, so I’ll just add on.

Benjamin Franklin assumed logically that electricity obviously must flow from positive to negative (since it’s the logical choice), but alas, he was wrong as far as history sees it.

Well, I’m sure he knew it was a guess. He was a smart man. He picked glass as the thing that picks up “electric fluid” in static electricity experiments, becoming “positively charged”, in other words a positive excess of fluid, when in fact it loses electrons. Until someone invented vacuum tubes a century or so later nobody could tell the difference.

Positive-to-negative is called “conventional current”, and circuit diagrams are still drawn that way. Unfortunately, the charge and direction of the particles moving (rather than just that they are moving) can become important if you want to understand electrochemistry, for example. Metal ions are positively charged (missing an electron), and so they’re going to come off of the electrode where electrons being removed, and plate on to the electrode where they’re being added. You have to remember the conventional current is opposite to the actual current to picture a battery running a circuit, and if it’s connected to a bunch of digital chips in a complicated way, I, at least, can get lost.

If that’s still unclear, any further questions are welcome.

permalink
report
parent
reply
16 points
*

On diagrams you’d use + as the “source” of elecricity, i.e. you assume electricity flows from + to - (poaitive to negative). Electricity as far as physics goes is an effect created by electrons, which are defined as negative in charge.

DC is electricity where the literal flow of electrons from point A to point B make the current (so it flows from negative to positive, since it’s the flow of “negative” electrons that carries electricity). Benjamin Franklin assumed logically that electricity obviously must flow from positive to negative (since it’s the logical choice), but alas, he was wrong as far as history sees it. So today, whenever you’re dealing with electrical diagrams current/electricity is assumed to flow from + to - while in the physical domain it’s the negatively charged electrons that create what we call electricity.

AC is a bit different - here electrons aren’t flowing directly from point A to point B, but rather wiggling about or “alternating” in place and it’s this alternating movement that carries the (still negative) charge. But even for AC it still holds true that electrical charge is the “negative” charge of electrons and that this movement of electrons alternating in place enables them to move this “negative” charge of theirs from one place to another.

I assume you know about the saying “opposites attract” - for electricity and charge it’s literally true, so you can view power consumption as the “positive” charge of protons (which is immovable because protons are bound to the cores of their atom), while it’s the “negative” charge of electrons which are located in the outer shells of metal atoms that can leave their atoms and move their charge that are viewed as the source/carrier of electricsl energy.

I put negative and positive in quotes because to get back to your question about defining why Franklin was wrong:

As it stands, there are two conventions on electricity. One is used in diagrams and often attributed to Franklin, the one that says that electricity flows from the positive (+) to the negative (-) pole. The other is the physics convention that protons hold positive charge while electrons hold negative charge, and this is where the disparity comes from. I don’t know which convention was chronologically earlier, but I assume it’s the physics one since Franklin is the one cited as “wrong”.

Obligatory I’m not an electrical engineer - this is only what I remember from my physics classes. Please assume it mostly correct but maybe not technically for every minute detail (the only use of “power” is technically very wrong among other things, but that’s the gist of it).

permalink
report
parent
reply
5 points

Electricity is the flow of electrons, who move from negative to positive, the opposite of what you would normally expect.

permalink
report
parent
reply
9 points

I find it fascinating that electricity is fast enough that this is a thing. You would never get this wrong with water, and if you did things wouldn’t work right, but electricity is basically instant.

permalink
report
parent
reply
4 points

Interestingly, electron flow is only a few mm/minute, on average. The field propagation travels at around 2/3 the speed of light (200,000,000m/s).

permalink
report
parent
reply

Asklemmy

!asklemmy@lemmy.ml

Create post

A loosely moderated place to ask open-ended questions

Search asklemmy 🔍

If your post meets the following criteria, it’s welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

Icon by @Double_A@discuss.tchncs.de

Community stats

  • 9.6K

    Monthly active users

  • 4.9K

    Posts

  • 275K

    Comments