How about ANY FINITE SEQUENCE AT ALL?
Yeah. This is a plot point used in a few stories, eg Carl Sagan’s “Contact”
Replace numbers with letters, and you have Jorge Luis Borges’ The Library of Babel.
https://libraryofbabel.info/ kinda blows my mind.
I’m going to say yes to both versions of your question. Infinity is still infinitely bigger than any expressible finite number. Plenty of room for local anomalies like long repeats and other apparent patterns.
It’s almost sure to be the case, but nobody has managed to prove it yet.
Simply being infinite and non-repeating doesn’t guarantee that all finite sequences will appear. For example, you could have an infinite non-repeating number that doesn’t have any 9s in it. But, as far as numbers go, exceptions like that are very rare, and in almost all (infinite, non-repeating) numbers you’ll have all finite sequences appearing.
Rare in this context is a question of density. There are infinitely many integers within the real numbers, for example, but there are far more non-integers than integers. So integers are more rare within the real.
Yes, compared to the infinitely more non exceptions. For each infinite number that doesn’t contain the digit 9 you have an infinite amount of numbers that can be mapped to that by removing all the 9s. For example 3.99345 and 3.34999995 both map to 3.345. In the other direction it doesn’t work that way.
The jury is out on whether every finite sequence of digits is contained in pi.
However, there are a multitude of real numbers that contain every finite sequence of digits when written in base 10. Here’s one, which is defined by concatenating the digits of every non-negative integer in increasing order. It looks like this:
0 . 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
The term for what you’re describing is a “normal number”. As @lily33@lemm.ee correctly pointed out it is still an open question whether pi is normal. This is a fun, simple-language exploration of the question in iambic pentameter, and is only 3 minutes and 45 seconds long.
Merry Christmas!
It’s remarkable how there are uncountably many non-normal numbers, yet they take up no space at all in the real numbers (form a null set), since almost all numbers are normal. And despite this, we can only prove normality for some specific classes of examples.
It helps me to think, how there are many “totally random” or non computable numbers, that are not normal because they don’t contain the digit 1.