Each sphere has an estimated lifespan of between 50 and 60 years, with partial replacement of components every 20 years or so.
The concept is fascinating, but what I’m most curious about is how they achieve that longevity in seawater. Benthic life really loves to settle and build on hard surfaces.
I would imagine it wouldn’t matter how many barnacles and stuff are on it. That’s the outside. Everything important is inside, I’m assuming the intake water will be screened or filtered in some way.
Most benthic life (by number) start as tiny, motile creatures. Screens would reduce head pressure and require maintenance. Barnacles of all kinds, as an example critter, settle on everything to which they can adhere. I’m guessing the engineers considered these complications since there have been past power project failures because of sea life. I wish the article went into those mitigations. If it’s somehow a non-issue by nature of the design, my curiosity is even more piqued.
Every time I see these “We’ll do X in/around the ocean” projects I think, “These people have not spent a lot of time near the ocean.”
There are 2000 year old Roman concrete piers that are still just hanging out in sea water. So it’s possible if you find the right mix.
The concrete isn’t the problem. Like mentioned above, the sealife growth is. Also, metal and moving mechanicals are savaged by seawater (and the sealife growth). Keeping things working on the surface of the water is difficult and expensive. Water pressure makes that even worse. Maintenance requires divers which are likewise very expensive.
Unfortunately, you can’t see BENTHIC live.
They don’t have a tour planned.
https://lifeforcerecords.com/archives/artists/benthic/
I think the sea has a huge potential of energy production that is totally untapped because of that.
There are tons of ways to produce energy with sea water but as soon as you put any moving parts in water it gets corroded and covered with benthic life (I’ve learned a word today). Every project of ocean energy production dies because of that.
Would it particularly affect the performance if the sphere ends up covered in barnacles or coral? It’s what’s inside that matters (it’s just a big hollow tank).
If you fill and empty with raw seawater on the regular then you will have plenty of opportunity for growth on the inside and a constant supply of new water with fresh nutrients meaning everything is going to want to grow into the water inlet and clog it.
Maybe they will sink a giant bladder of sterile water together with the hollow sphere, and then figure out a way to make the bladder not fail for 20 years?
High social acceptability: Installed far from inhabited areas, these facilities arouse less opposition.
Actually, being very close to inhabited areas, but 0 impact, including nonsensical nuissance arguments, means short power transmission. It’s also very easy to pair with offshore wind.
I’m pretty skeptical about this- wouldn’t a 30m sphere be incredibly buoyant when empty? I get its concrete, but it’s displacing huge amounts of water. So you’d need some massive anchoring, maybe that’s not a big deal. Second, I don’t know what depths we’re talking about here, but I feel like the stress from cycling these things daily would be insane- in high pressure salt water no less. I also wonder what the efficiency of this system would be compared to other similar batteries, like pumped hydro storage. It seems to me pumping out water to near vacuum while under crushing outside water pressure would be a significant power hog.
It seems to me pumping out water to near vacuum while under crushing outside water pressure would be a significant power hog
Well, yeah. That’s the point. It’s a battery. Whatever energy you put in to pump the water out, you get some percentage (probably in the 50-70% range) of it back when you let the water back in. The point of these is to store energy from renewables whenever they are providing more power than the grid demands - otherwise the power would be wasted.
Edit: The paper claims 72% efficiency which is pretty good if I understand things correctly
I don’t know what depths we’re talking about here,
From the article:
The idea is relatively simple: hollow concrete spheres are installed at a depth of several hundred metres.
Thanks, I missed that on my read through - 1000 feet of water is pretty serious pressure.
The most pressure it would experience would be the difference in internal vs external pressure. At 1000ft of depth there’s a pressure of 440psi. Assuming the sphere somehow managed a perfect vacuum that’s still well below the 6000psi compressive strength of high strength concrete, hell they would still have more flexural strength. The spheres themselves definitely wouldn’t be the weak link.
… you’d need some massive …
from the srticle :
… a sphere nine metres in diameter and weighing 400 tonnes will be submerged …
Can you calculate the weight of a sphere of 9 m of displaced water ?
No ? Well, it is 382 tons.
So, the concrete sphere is already massive by itself. “You” don’t need any complicated anchoring.
Same goes with the rest of your mechanical engineering intuitions : you did not work in this domain or study it, did you 😆 ?
Also, stress cycling is bad on most material, yes. But here it is compressive stress and the geometry is symmetric. Without further study, i want to believe this thing has good potential and my intuitions tells me it looks nice. Time will tell 😁 !
Can you calculate the weight of a sphere of 9 m of displaced water ?
No ? Well, it is 382 tons.
Metric strikes again.
I bet you didn’t even have to convert through football fields, elephants, or olympic sized swimming pools!
Thanks for the insight, I’m not a mechanical engineer, I’m a software engineer :) The walls on these spheres have got to be pretty thick- 400 tonnes is no joke. 3/4 of a meter if I had to guess.
Perfect guess ! (afaik)
ρ(concrete) ≈ 2.5 tons/m³
so full sphere ≈ (2.5 x 382) tons = 955 tons
they have 400 t so the cavity removes :
955 - 400 = 555 t … so 7.51m diam. cavity
… so, yes 3/4m thick wall 😌👍 !
I would like to know what is the % of loss when storing power as any energy conversion is not lossless.
Cheap storage is more important than conversion ratio. Enough renewables leads to periods of negative prices without matching storage capacity. Storage can mean 1-2c/kwh charging costs, and even 50% efficiency makes discharged power 2-4c/kwh.
if 0.5m thick sphere, 30m diameter is 1413 m^3 of concrete. $300k to $400k in materials. Stores 150mwh power. About $2-$3/kwh
Wow, someone invented upside down pumped storage.