What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?

Here are some I would like to share:

  • Gödel’s incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
  • Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)

The Busy Beaver function

Now this is the mind blowing one. What is the largest non-infinite number you know? Graham’s Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.

  • The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don’t even know if you can compute the function to get the value even with an infinitely powerful PC.
  • In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
  • Σ(1) = 1
  • Σ(4) = 13
  • Σ(6) > 101010101010101010101010101010 (10s are stacked on each other)
  • Σ(17) > Graham’s Number
  • Σ(27) If you can compute this function the Goldbach conjecture is false.
  • Σ(744) If you can compute this function the Riemann hypothesis is false.

Sources:

163 points

There are more ways to arrange a deck of 52 cards than there are atoms on Earth.

52 Factorial

I feel this one is quite well known, but it’s still pretty cool.

permalink
report
reply
80 points

An extension of that is that every time you shuffle a deck of cards there’s a high probability that that particular arrangement has never been seen in the history of mankind.

permalink
report
parent
reply
31 points

With the caveat that it’s not the first shuffle of a new deck. Since card decks come out of the factory in the same order, the probability that the first shuffle will result in an order that has been seen before is a little higher than on a deck that has already been shuffled.

permalink
report
parent
reply
10 points
*

Since a deck of cards can only be shuffled a finite number of times before they get all fucked up, the probability of deck arrangements is probably a long tail distribution

permalink
report
parent
reply
11 points

assuming a perfect mechanical shuffle, I think the odds are near zero. humans don’t shuffle perfectly though!

permalink
report
parent
reply
3 points
*

perfect mechanical shuffle

What’s perfect in this context? It’s maybe a little counterintuitive because I’d think a perfect mechanical shuffle would be perfectly deterministic (assuming no mechanical failure of the device) so that it would be repeatable. Like, you would give it a seed number (about 67 digits evidently) and the mechanism would perform a series of interleaves completely determined by the seed. Then if you wanted a random order you would give the machine a true random seed (from your wall of lava lamps or whatever) and you’d get a deck with an order that is very likely to never have been seen before. And if you wanted to play a game with that particular deck order again you’d just put the same seed into the machine.

permalink
report
parent
reply
113 points
*

For the uninitiated, the monty Hall problem is a good one.

Start with 3 closed doors, and an announcer who knows what’s behind each. The announcer says that behind 2 of the doors is a goat, and behind the third door is a car student debt relief, but doesn’t tell you which door leads to which. They then let you pick a door, and you will get what’s behind the door. Before you open it, they open a different door than your choice and reveal a goat. Then the announcer says you are allowed to change your choice.

So should you switch?

The answer turns out to be yes. 2/3rds of the time you are better off switching. But even famous mathematicians didn’t believe it at first.

permalink
report
reply
89 points

I know the problem is easier to visualize if you increase the number of doors. Let’s say you start with 1000 doors, you choose one and the announcer opens 998 other doors with goats. In this way is evident you should switch because unless you were incredibly lucky to pick up the initial door with the prize between 1000, the other door will have it.

permalink
report
parent
reply
23 points

I now recall there was a numberphile with exactly that visualisation! It’s a clever visual

permalink
report
parent
reply
12 points

It really is, it’s how my probability class finally got me to understand why this solution is true.

permalink
report
parent
reply
16 points

This is so mind blowing to me, because I get what you’re saying logically, but my gut still tells me it’s a 50/50 chance.

But I think the reason it is true is because the other person didn’t choose the other 998 doors randomly. So if you chose any of the other 998 doors, it would still be between the door you chose and the winner, other than the 1/1000 chance that you chose right at the beginning.

permalink
report
parent
reply
11 points

I don’t find this more intuitive. It’s still one or the other door.

permalink
report
parent
reply
17 points

The point is, the odds don’t get recomputed after the other doors are opened. In effect you were offered two choices at the start: choose one door, or choose all of the other 999 doors.

permalink
report
parent
reply
16 points
*

The thing is, you pick the door totally randomly and since there are more goats, the chance to pick a goat is higher. That means there’s a 2/3 chance that the door you initially picked is a goat. The announcer picks the other goat with a 100% chance, which means the last remaining door most likely has the prize behind it

Edit: seems like this was already answered by someone else, but I didn’t see their comment due to federation delay. Sorry

permalink
report
parent
reply
9 points
*

I think the problem is worded specifically to hide the fact that you’re creating two set of doors by picking a door, and that shrinking a set actually make each individual door in that set more likely to have the prize.

Think of it this way : You have 4 doors, 2 blue doors and 2 red doors. I tell you that there is 50% chance of the prize to be in either a blue or a red door. Now I get to remove a red door that is confirmed to not have the prize. If you had to chose, would you pick a blue door or a red door? Seems obvious now that the remaining red door is somehow a safer pick. This is kind of what is happening in the initial problem, but since the second ensemble is bigger to begin with (the two doors you did not pick), it sort of trick you into ignoring the fact that the ensemble shrank and that it made the remaining door more “valuable”, since the two ensembles are now of equal size, but only one ensemble shrank, and it was always at 2/3 odds of containing the prize.

permalink
report
parent
reply
7 points

The odds you picked the correct door at the start is 1/1000, that means there’s a 999/1000 chance it’s in one of the other 999 doors. If the man opens 998 doors and leaves one left then that door has 999/1000 chance of having the prize.

permalink
report
parent
reply
2 points

Same here, even after reading other explanations I don’t see how the odds are anything other than 50/50.

permalink
report
parent
reply
2 points

How do we even come up with such amazing problems right ? It’s fascinating.

permalink
report
parent
reply
2 points

This is fantastic, thank you.

permalink
report
parent
reply
12 points

But even famous mathematicians didn’t believe it at first.

They emphatically did not believe it at first. Marilyn vos Savant was flooded with about 10,000 letters after publishing the famous 1990 article, and had to write two followup articles to clarify the logic involved.

permalink
report
parent
reply
1 point

Oh that’s cool - I had heard one or two examples only. Is there some popular writeup of the story from Savant’s view?

permalink
report
parent
reply
3 points
*

I couldn’t tell you - I used the Wikipedia article to reference the specifics and I’m not sure where I first heard about the story. I just remember that the mathematics community dogpiled on her hard for some time and has since completely turned around to accept her answer as correct.

Also relevant - she did not invent the problem, but her article is considered by some to have been what popularized it.

permalink
report
parent
reply
12 points

I know it to be true, I’ve heard it dozens of times, but my dumb brain still refuses to accept the solution everytime. It’s kind of crazy really

permalink
report
parent
reply
5 points
*

To me, it makes sense because there was initially 2 chances out of 3 for the prize to be in the doors you did not pick. Revealing a door, exclusively on doors you did not pick, does not reset the odds of the whole problem, it is still more likely that the prize is in one of the door you did not pick, and a door was removed from that pool.

Imo, the key element here is that your own door cannot be revealed early, or else changing your choice would not matter, so it is never “tested”, and this ultimately make the other door more “vouched” for, statistically, and since you know that the door was more likely to be in the other set to begin with, well, might as well switch!

permalink
report
parent
reply
5 points
*

Let’s name the goats Alice and Bob. You pick at random between Alice, Bob, and the Car, each with 1/3 chance. Let’s examine each case.

  • Case 1: You picked Alice. Monty eliminates Bob. Switching wins. (1/3)

  • Case 2: You picked Bob. Monty eliminates Alice. Switching wins. (1/3)

  • Case 3: You picked the Car. Monty eliminates either Alice or Bob. You don’t know which, but it doesn’t matter-- switching loses. (1/3)

It comes down to the fact that Monty always eliminates a goat, which is why there is only one possibility in each of these (equally probable) cases.

From another point of view: Monty revealing a goat does not provide us any new information, because we know in advance that he must always do so. Hence our original odds of picking correctly (p=1/3) cannot change.


In the variant “Monty Fall” problem, where Monty opens a random door, we perform the same analysis:

  • Case 1: You picked Alice. (1/3)
    • Case 1a: Monty eliminates Bob. Switching wins. (1/2 of case 1, 1/6 overall)
    • Case 1b: Monty eliminates the Car. Game over. (1/2 of case 1, 1/6 overall)
  • Case 2: You picked Bob. (1/3)
    • Case 2a: Monty eliminates Alice. Switching wins. (1/2 of case 2, 1/6 overall)
    • Case 2b: Monty eliminates the Car. Game over. (1/2 of case 2, 1/6 overall)
  • Case 3: You picked the Car. (1/3)
    • Case 3a: Monty eliminates Alice. Switching loses. (1/2 of case 3, 1/6 overall)
    • Case 3b: Monty eliminates Bob. Switching loses. (1/2 of case 3, 1/6 overall)

As you can see, there is now a chance that Monty reveals the car resulting in an instant game over-- a 1/3 chance, to be exact. If Monty just so happens to reveal a goat, we instantly know that cases 1b and 2b are impossible. (In this variant, Monty revealing a goat reveals new information!) Of the remaining (still equally probable!) cases, switching wins half the time.

permalink
report
parent
reply
3 points

like on paper the odds on your original door was 1/3 and the option door is 1/2, but in reality with the original information both doors were 1/3 and now with the new information both doors are 1/2.

permalink
report
parent
reply
1 point

Your original odds were 1/3, and this never changes since you don’t get any new information.

The key is that Monty always reveals a goat. No matter what you choose, even before you make your choice, you know Monty will reveal a goat. Therefore, when he does so, you learn nothing you didn’t already know.

permalink
report
parent
reply
-3 points

Yes, you don’t actually have to switch. You could also throw a coin to decide to stay at the current door or to switch. By throwing a coin, you actually improved your chances of winning the price.

permalink
report
parent
reply
1 point

This explanation really helped me make sense of it: Monty Hall Problem (best explanation) - Numberphile

permalink
report
parent
reply
2 points

It’s a good one.

permalink
report
parent
reply
2 points

It took me a while to wrap my head around this, but here’s how I finally got it:

There are three doors and one prize, so the odds of the prize being behind any particular door are 1/3. So let’s say you choose door #1. There’s a 1/3 chance that the prize is behind door #1 and, therefore, a 2/3 chance that the prize is behind either door #2 OR door #3.

Now here’s the catch. Monty opens door #2 and reveals that it does not contain the prize. The odds are the same as before – a 1/3 chance that the prize is behind door #1, and a 2/3 chance that the prize is behind either door #2 or door #3 – but now you know definitively that the prize isn’t behind door #2, so you can rule it out. Therefore, there’s a 1/3 chance that the prize is behind door #1, and a 2/3 chance that the prize is behind door #3. So you’ll be twice as likely to win the prize if you switch your choice from door #1 to door #3.

permalink
report
parent
reply
1 point
Deleted by creator
permalink
report
parent
reply
1 point
*

First, fuck you! I couldn’t sleep. The possibility to win the car when you change is the possibility of your first choice to be goat, which is 2/3, because you only win when your first choice is goat when you always change.

x1: you win

x2: you change

x3: you pick goat at first choice

P(x1|x2,x3)=1 P(x1)=1/2 P(x3)=2/3 P(x2)=1/2

P(x1|x2) =?

Chain theory of probability:

P(x1,x2,x3)=P(x3|x1,x2)P(x1|x2)P(x2)=P(x1|x2,x3)P(x2|x3)P(x3)

From Bayes theorem: P(x3|x1,x2)= P(x1|x2,x3)P(x2)/P(x1) =1

x2 and x3 are independent P(x2|x3)=P(x2)

P(x1| x2)=P(x3)=2/3 P(x2|x1)=P(x1|x2)P(x2)/P(X1)=P(x1|x2)

P(x1=1|x2=0) = 1- P(x1=1|x2=1) = 1\3 is the probability to win if u do not change.

permalink
report
parent
reply
2 points

Why do you have a P(x1) = 1/2 at the start? I’m not sure what x1 means if we don’t specify a strategy.

permalink
report
parent
reply
1 point

Just count the number of possibilities. If you change there there two possible first choices to win + if you do not change 1 possible choice to win = 3. If you change there is one possible first choice to lose + if you do not change there two possible first choices to lose=3 P(x1)=P(x1’) = 3/6

permalink
report
parent
reply
1 point
Deleted by creator
permalink
report
parent
reply
1 point
Deleted by creator
permalink
report
parent
reply
101 points
*

Goldbach’s Conjecture: Every even natural number > 2 is a sum of 2 prime numbers. Eg: 8=5+3, 20=13+7.

https://en.m.wikipedia.org/wiki/Goldbach’s_conjecture

Such a simple construct right? Notice the word “conjecture”. The above has been verified till 4x10^18 numbers BUT no one has been able to prove it mathematically till date! It’s one of the best known unsolved problems in mathematics.

permalink
report
reply
15 points

Wtf !

permalink
report
parent
reply
2 points

How can you prove something in math when numbers are infinite? That number you gave if it works up to there we can call it proven no? I’m not sure I understand

permalink
report
parent
reply
14 points
*

There are many structures of proof. A simple one might be to prove a statement is true for all cases, by simply examining each case and demonstrating it, but as you point out this won’t be useful for proving statements about infinite cases.

Instead you could assume, for the sake of argument, that the statement is false, and show how this leads to a logical inconsistency, which is called proof by contradiction. For example, Georg Cantor used a proof by contradiction to demonstrate that the set of Natural Numbers (1,2,3,4…) are smaller than the set of Real Numbers (which includes the Naturals and all decimal numbers like pi and 69.6969696969…), and so there exist different “sizes” of infinity!

For a method explicitly concerned with proofs about infinite numbers of things, you can try Proof by Mathematical Induction. It’s a bit tricky to describe…

  • First demonstrate that a statement is true in some 1st base case.
  • Then demonstrate that if it holds true for the abstract Nth case, then it necessarily holds true for the (N+1)th case (by doing some clever rearranging of algebra terms or something)
  • Therefore since it holds true for the 1th case, it must hold true for the (1+1)th case = the 2th case. And since it holds true for the 2th case it must hold true for the (2+1)=3th case. And so on ad infinitum.

Wikipedia says:

Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes.

Bear in mind, in formal terms a “proof” is simply a list of true statements, that begin with axioms (which are true by default) and rules of inference that show how each line is derived from the line above.

permalink
report
parent
reply
2 points

Very cool and fascinating world of mathematics!

permalink
report
parent
reply
1 point

Just to add to this. Another way could be to find a specific construction. If you could for example find an algorithm that given any even integer returns two primes that add up to it and you showed this algorithm always works. Then that would be a proof of the Goldbach conjecture.

permalink
report
parent
reply
5 points

As you said, we have infinite numbers so the fact that something works till 4x10^18 doesn’t prove that it will work for all numbers. It will take only one counterexample to disprove this conjecture, even if it is found at 10^100. Because then we wouldn’t be able to say that “all” even numbers > 2 are a sum of 2 prime numbers.

So mathematicians strive for general proofs. You start with something like: Let n be any even number > 2. Now using the known axioms of mathematics, you need to prove that for every n, there always exists two prime numbers p,q such that n=p+q.

Would recommend watching the following short and simple video on the Pythagoras theorem, it’d make it perfectly clear how proofs work in mathematics. You know the theorem right? For any right angled triangle, the square of the hypotenuse is equal to the sum of squares of both the sides. Now we can verify this for billions of different right angled triangles but it wouldn’t make it a theorem. It is a theorem because we have proved it mathematically for the general case using other known axioms of mathematics.

https://youtu.be/YompsDlEdtc

permalink
report
parent
reply
5 points

That’s a really great question. The answer is that mathematicians keep their statements general when trying to prove things. Another commenter gave a bunch of examples as to different techniques a mathematician might use, but I think giving an example of a very simple general proof might make things more clear.

Say we wanted to prove that an even number plus 1 is an odd number. This is a fact that we all intuitively know is true, but how do we know it’s true? We haven’t tested every single even number in existence to see that itself plus 1 is odd, so how do we know it is true for all even numbers in existence?

The answer lies in the definitions for what is an even number and what is an odd number. We say that a number is even if it can be written in the form 2n, where n is some integer, and we say that a number is odd if it can be written as 2n+1. For any number in existence, we can tell if it’s even or odd by coming back to these formulas.

So let’s say we have some even number. Because we know it’s even, we know we can write it as 2n, where n is an integer. Adding 1 to it gives 2n+1. This is, by definition, an odd number. Because we didn’t restrict at the beginning which even number we started with, we proved the fact for all even numbers, in one fell swoop.

permalink
report
parent
reply
88 points

The four-color theorem is pretty cool.

You can take any map of anything and color it in using only four colors so that no adjacent “countries” are the same color. Often it can be done with three!

Maybe not the most mind blowing but it’s neat.

permalink
report
reply
39 points
*

Thanks for the comment! It is cool and also pretty aesthetically pleasing!

permalink
report
parent
reply
1 point

Your map made me think how interesting US would be if there were 4 major political parties. Maybe no one will win the presidential election 🤔

permalink
report
parent
reply
15 points
*

What about a hypothetical country that is shaped like a donut, and the hole is filled with four small countries? One of the countries must have the color of one of its neighbors, no?

permalink
report
parent
reply
17 points

I think the four small countries inside would each only have 2 neighbours. So you could take 2 that are diagonal and make them the same colour.

permalink
report
parent
reply
7 points

Looks to be that way one of the examples given on the wiki page. It is still however an interesting theory, if four countries touching at a corner, are the diagonal countries neighbouring each other or not. It honestly feels like a question that will start a war somewhere at sometime, probably already has.

permalink
report
parent
reply
3 points

Ok now do this one. What color is the donut country?

permalink
report
parent
reply
3 points

But each small country has three neighbors! Two small ones, and always the big donut country. I attached a picture to my previous comment to make it more clear.

permalink
report
parent
reply
10 points

In that image, you could color yellow into purple since it’s not touching purple. Then, you could color the red inner piece to yellow, and have no red in the inner pieces.

permalink
report
parent
reply
9 points

There are some rules about the kind of map this applies to. One of them is “no countries inside other countries.”

permalink
report
parent
reply
2 points

Not true, see @BitSound’s comment.

It does have to be topologically planar (may not be the technical term), though. No donut worlds.

permalink
report
parent
reply
1 point

I see.

permalink
report
parent
reply
11 points
*

I read an interesting book about that once, will need to see if I can find the name of it.

EDIT - well, that was easier than expected!

permalink
report
parent
reply
3 points
*

Read the author as Robin Williams

permalink
report
parent
reply
8 points

Note you’ll need the regions to be connected (or allow yourself to color things differently if they are the same ‘country’ but disconnected). I forget if this causes problems for any world map.

permalink
report
parent
reply
14 points

I suspect that the Belgium-Netherlands border defies any mathematical description.

permalink
report
parent
reply
4 points
*

If you had a 3 dimensional map, would you need more colors to achieve the same results?

Edit: it was explained in your link. It looks like for surfaces in 3D space, this can’t be generalized.

permalink
report
parent
reply
2 points

this whole thread is the shit.

permalink
report
parent
reply
1 point

Isn’t the proof of this theorem like millions of pages long or something (proof done by a computer ) ? I mean how can you even be sure that it is correct ? There might be some error somewhere.

permalink
report
parent
reply
70 points

I came here to find some cool, mind-blowing facts about math and have instead confirmed that I’m not smart enough to have my mind blown. I am familiar with some of the words used by others in this thread, but not enough of them to understand, lol.

permalink
report
reply
12 points

Same here! Great post but I’m out! lol

permalink
report
parent
reply
8 points

Nonsense! I can blow both your minds without a single proof or mathematical symbol, observe!

There are different sizes of infinity.

Think of integers, or whole numbers; 1, 2, 3, 4, 5 and so on. How many are there? Infinite, you can always add one to your previous number.

Now take odd numbers; 1, 3, 5, 7, and so on. How many are there? Again, infinite because you just add 2 to the previous odd number and get a new odd number.

Both of these are infinite, but the set of numbers containing odd numbers is by definition smaller than the set of numbers containing all integers, because it doesn’t have the even numbers.

But they are both still infinite.

permalink
report
parent
reply
11 points
*

Your fact is correct, but the mind-blowing thing about infinite sets is that they go against intuition.

Even if one might think that the number of odd numbers is strictly less than the number of all natural numbers, these two sets are in fact of the same size. With the mapping n |-> 2*n - 1 you can map each natural number to a different odd number and you get every odd number with this (such a function is called a bijection), so the sets are per definition of the same size.

To get really different “infinities”, compare the natural numbers to the real numbers. Here you can’t create a map which gets you all real numbers, so there are “more of them”.

permalink
report
parent
reply
9 points

I may be wrong or have misunderstood what you said but the sets of natural numbers and odd numbers have the same size/cardinality. If there exists a bijection between the two sets then they have the same size.

f(x) = 2x + 1 is such a bijection

For the same reason, N, Z and Q have the same cardinality. The fact that each one is included in the next ones doesn’t mean their size is different.

permalink
report
parent
reply
2 points
*

Both of these are infinite, but the set of numbers containing odd numbers is by definition smaller than the set of numbers containing all integers, because it doesn’t have the even numbers.

This is provably false - the two sets are the same size. If you take the set of all integers, and then double each number and subtract one, you get the set of odd numbers. Since you haven’t removed or added any elements to the initial set, the two sets have the same size.

The size of this set was named Aleph-zero by Cantor.

permalink
report
parent
reply
4 points
*

There was a response I left in the main comment thread but I’m not sure if you will get the notification. I wanted to post it again so you see it

Response below

Please feel free to ask any questions! Math is a wonderful field full of beauty but unfortunately almost all education systems fail to show this and instead makes it seem like raw robotic calculations instead of creativity.

Math is best learned visually and with context to more abstract terms. 3Blue1Brown is the best resource in my opinion for this!

Here’s a mindblowing fact for you along with a video from 3Blue1Brown. Imagine you are sliding a 1,000,000 kg box and slamming it into a 1 kg box on an ice surface with no friction. The 1 kg box hits a wall and bounces back to hit the 1,000,000 kg box again.

The number of bounces that appear is the digits of Pi. Crazy right? Why would pi appear here? If you want to learn more here’s a video from the best math teacher in the world.

https://www.youtube.com/watch?v=HEfHFsfGXjs

permalink
report
parent
reply
3 points

That’s so cool! Thanks for the reply and the link.

permalink
report
parent
reply
9 points
*

Please feel free to ask any questions! Math is a wonderful field full of beauty but unfortunately almost all education systems fail to show this and instead makes it seem like raw robotic calculations instead of creativity.

Math is best learned visually and with context to more abstract terms. 3Blue1Brown is the best resource in my opinion for this!

Here’s a mindblowing fact for you along with a video from 3Blue1Brown. Imagine you are sliding a 1,000,000 kg box and slamming it into a 1 kg box on an ice surface with no friction. The 1 kg box hits a wall and bounces back to hit the 1,000,000 kg box again.

The number of bounces that appear is the digits of Pi. Crazy right? Why would pi appear here? If you want to learn more here’s a video from the best math teacher in the world.

https://www.youtube.com/watch?v=HEfHFsfGXjs

permalink
report
parent
reply
4 points

Thanks! I appreciate the response. I’ve seen some videos on 3blue1brown and I’ve really enjoyed them. I think if I were to go back and fill in all the blank spots in my math experience/education I would enjoy math quite a bit.

permalink
report
parent
reply

I don’t know why it appears here or why I feel this way, but picturing the box bouncing off the wall and back, losing energy, feels intuitively round to me.

permalink
report
parent
reply

No Stupid Questions

!nostupidquestions@lemmy.world

Create post

No such thing. Ask away!

!nostupidquestions is a community dedicated to being helpful and answering each others’ questions on various topics.

The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:

Rules (interactive)


Rule 1- All posts must be legitimate questions. All post titles must include a question.

All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.



Rule 2- Your question subject cannot be illegal or NSFW material.

Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.



Rule 3- Do not seek mental, medical and professional help here.

Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.



Rule 4- No self promotion or upvote-farming of any kind.

That’s it.



Rule 5- No baiting or sealioning or promoting an agenda.

Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.



Rule 6- Regarding META posts and joke questions.

Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.

On fridays, you are allowed to post meme and troll questions, on the condition that it’s in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.

If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.



Rule 7- You can't intentionally annoy, mock, or harass other members.

If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.

Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.



Rule 8- All comments should try to stay relevant to their parent content.

Rule 9- Reposts from other platforms are not allowed.

Let everyone have their own content.



Rule 10- Majority of bots aren't allowed to participate here.

Credits

Our breathtaking icon was bestowed upon us by @Cevilia!

The greatest banner of all time: by @TheOneWithTheHair!

Community stats

  • 9.5K

    Monthly active users

  • 3K

    Posts

  • 120K

    Comments