Why aren’t motherboards mostly USB-C by now?::I’m beginning to think that the Windows PC that I built in 2015 is ready for retirement (though if Joe Biden can be president at 78, maybe this PC can last until 2029?). In looking at new des…

107 points

There’s no reason to replace USB A on most desktops since it would break 20+ years of backwards compatibility without any real benefit. Maybe 1 or 2 would be useful.

permalink
report
reply
27 points
*

Thats the thing, with a small adaptor that has no logic/silicon, usb-a device is fully compatible with a usb-c port. And things like framework solved this issue ages ago to make hardware expose either, or both, usb-c and usb-a…

If anything, i think the usb-c price might be why its nowhere to be seen. However, with the eu laws that might change in the next 8y, but i doubt it as usb-c to usb-a are a thing

permalink
report
parent
reply
6 points
*

If manufacturers start making printers, mouses, keyboards, headsets and all other peripherals with usb-c cables and provide c to a adapters in the boxes, then motherboard manufacturers should start adding more ports to support them without those adapters.

But the Apple way of changing all ports to USB-C because “you can just use dongles!” is dumb. Motherboards have plenty of space for both, usb-c is like the smallest connector that exists right after the 3.5mm audio plug.

permalink
report
parent
reply
6 points

Having lived through the initial rollout of USB, I remember a period of time when a PC would come with a few USB ports, printers had parallel and USB ports on them, mice came with USB to P/S2 adapters in the box etc. so there was a transitional period. Everyone seemed to be onboard with the idea that USB was the future. Within a decade, P/S2, RS-232 and parallel ports disappeared from PCs.

That same drive to move the fuck on and complete the transition doesn’t seem to be there this time. Mobile device manufacturers have adopted USB-C as entirely as they can because of their weird obsession with making devices uselessly thin. Peripheral manufacturers really haven’t; displays are still HDMI or DP, Logitech outright refuses to make a USB-C Unifying Transceiver…“dongle life.” And desktop PCs have relatively few USB-C ports meaning if you do manage to collect up USB-C peripherals for your mobile life, they’re a pain on desktop.

permalink
report
parent
reply
5 points

If y’all still have desktops, there’s just no excuse. There’s room to include any port that may be convenient, and having some extra would let you modernize as you need to replace accessories.

At least with laptops, there may be a space argument for limited ports

permalink
report
parent
reply
8 points

Still any more than 2 seems like a waste since PCs also have dedicated video, audio, power, and data ports. USB-C makes sense on laptops and phones because you can lump all those things into one or two ports. This isn’t necessary on a PC and just adds extra cost with little benefit.

My board from 2018 has a rear USB-C and header for front USB-C. I’ve only used only one of them a handful of times in all these years to transfer large files to/from a phone and this is coming from someone with a lot of different devices that use USB to interface with the PC.

permalink
report
parent
reply
1 point

You’re assuming you only need USB-C for things where it is uniquely suited, whereas im assuming we want to transition everything to the new standard, so we have one port, one connector, one wire

permalink
report
parent
reply
88 points

So, much as I hate to admit it, the real reason for this is bandwidth. Lets look at the best case scenario without dipping our toes into server grade hardware. AMD CPUs tend to have more I/O bandwidth allocated than Intel, so we’ll take the top of the line desktop AMD CPU as of right now, the Ryzen 9 7950X (technically the X3D version is the actual top of the line, but that makes certain tradeoffs and for our purposes in this discussion both chips are identical).

On paper, the 7950X has 24 PCIe 5.0 lanes, and 4 on board USB 3.2 ports on its built in USB controller. So already we could have a maximum of 4 type-C ports if we had no type-A ports, however in practice most manufacturers opt to split the difference and go with 1 or 2 type-C ports and the remaining 2 or 3 ports as type-A. You can have more USB ports of course, but you need to then include a USB controller on your motherboards chipset, and that in turn needs to be wired into the PCIe bus which means taking up PCIe lanes, so lets take a look at the situation over there.

We start with 24 PCIe lanes, but immediately we’re going to be sacrificing 16 of those for the GPU, so really we have 8 PCIe lanes. Further, most systems now use NVMe M.2 drives, and NVMe uses up to 4 PCIe lanes at its highest supported speed. So we’re now down to 4 PCIe lanes, and this is without any extra PCIe cards or a second NVMe drive.

So, now you need to plug a USB controller into your PCIe bus. USB 3.2 spec defines the highest supported bandwidth as 10 Gbps. PCIe 5.0 defines the maximum bandwidth of a single PCIe lane as a bit over 31 Gbps. So the good news is, you can successfully drive up to 3 USB 3.2 ports off a single PCIe 5.0 lane. In practice though USB controllers are always designed with even numbers of ports, typically 2 or 4. In the case of 4, one lane isn’t going to cut it, you’ll need at least 2 PCIe lanes.

I think you can see at this point why manufacturers aren’t in a huge rush to slap a ton of USB type-c connectors on their motherboards. With a modern desktop there’s already a ton of devices competing for limited CPU I/O bandwidth. Even without an extra USB controller added in it’s already entirely feasible to come dangerously close to completely saturating all available bandwidth.

permalink
report
reply
13 points

Thank you for the detailed and enlightening explanation!

permalink
report
parent
reply
11 points

They don’t all have to be high speed. For example, we already see a distinction in USB-A based on things like power and data speed. I don’t see why anyone would be surprised at a similar arrangement for USB-C. Let me have my low speed keyboard and mouse ports, my low power watch charging port

permalink
report
parent
reply
20 points

While that is true, it does cause some headaches for end users. There’s a (barely followed) code for differentiating the speeds of type-A connectors, but I’m not aware of any such system for type-C. Generally people expect a type-C connection to be full USB 3.2 or USB-4 speeds (not to mention the absolute state of the USB spec with them changing the nomenclature constantly). If you started putting USB 2.0 ports with type-C connectors you’d quickly find people complaining about that I’m sure.

Really, in the long term I’m sure in another CPU generation or two we’ll have enough bandwidth to spare that manufacturers can start putting extra USB 3.2 or USB 4 controllers on the motherboards at which point they’ll be able to replace most of the type-A ports with type-C without losing speed. In practice though I expect we’ll see history repeating itself with “low” speed type-C ports and high speed type-C ports that support whatever the latest and greatest USB spec is, and no doubt some kind of distinguishing mark to differentiate them. We already see something like that with lightning, although that’s just a little too proprietary to really cut it, we’ll need to get something that’s part of the USB spec itself.

permalink
report
parent
reply
2 points

Almost none of the alternate modes or advanced features are required for USB-C devices. Most smartphones don’t support high data rates over their single USB-C port. There are are probably more USB-C ports using the USB 2.0 specs, for example peripheral devices like mice or keyboards. Beyond stuff like DisplayPort alternate mode, there still isn’t a big demand for more than one or two USB-C ports with high data rates or the full feature set.

permalink
report
parent
reply
1 point
*

The latest USB standard has a minimum of 20 Gigabit. Of course, they could only support USB 2, but there would be complaints.

permalink
report
parent
reply
8 points

I think power delivery is a concern too. If a motherboard had 4 USB-C ports on it, you know someone would try to plug in 4 USB-C monitors at 100W (20V/5A) each, so 400W going across your IO bus. At that point if your motherboard doesn’t just burn out, and you have a big enough power supply to provide it, you’re still going to have a serious heat problem.

permalink
report
parent
reply
3 points

Yeah I recently started using a motherboard that has a 6-pin GPU style header for powering the USB-C ports. It limits power delivery capacity if you don’t plug the connector in, but if you do it supports 100W ports.

permalink
report
parent
reply
2 points

100W on each port or 100W total output for all 6 ports? I seriously doubt your power supply will deliver 600W on one peripheral cable.

permalink
report
parent
reply
2 points

Don’t support 100W power delivery on all ports then.

permalink
report
parent
reply
4 points

I think it’s easy to say this, but harder to actually do in practice. There’s a color code system for USB-A, but a lot of manufacturers didn’t follow it reliably, and most users don’t know what the differences are anyway (I’d certainly have to look up what Yellow and Red are specifically for). You’d have the same problem with trying to mark USB-C ports, and without some easily identifiable marking most users will just expect that a USB-C port is a USB-C port.

permalink
report
parent
reply
2 points
*

Isn’t this glossing over that (when allocating 16 PCIe lanes to a GPU as per your example), most of the remaining I/O connectivity comes from the chipset, not directly from the CPU itself?

There’ll still be bandwidth limitations, of course, as you’ll only be able to max out the bandwidth of the link (which in this case is 4x PCIe 4.0 lanes), but this implies that it’s not only okay but normal to implement designs that don’t support maximum theoretical bandwidth being used by all available ports and so we don’t need to allocate PCIe lanes <-> USB ports as stringently as your example calculations require.

Note to other readers (I assume OP already knows): PCIe lane bandwidth doubles/halves when going up/down one generation respectively. So 4x PCIe 4.0 lanes are equivalent in maximum bandwidth to 2x PCIe 5.0 lanes, or 8x PCIe 3.0 lanes.

edit: clarified what I meant about the 16 “GPU-assigned” lanes.

permalink
report
parent
reply
5 points

Typically no, the top two PCIE x16 slots are normally directly to the CPU, though when both are plugged in they will drop down to both being x8 connectivity.

Any PCIE x4 or X1 are off the chipset, as well as some IO, and any third or fourth x16 slots.

So yes, motherboards typically do implement more IO connectivity than can be used simultaneously, though they will try to avoid disabling USB ports or dropping their speed since regular customers will not understand why.

permalink
report
parent
reply
3 points
*

Typically no, the top two PCIE x16 slots are normally directly to the CPU, though when both are plugged in they will drop down to both being x8 connectivity.

Any PCIE x4 or X1 are off the chipset, as well as some IO, and any third or fourth x16 slots.

I think the relevant part of my original comment might’ve been misunderstood – I’ll edit to clarify that but I’m already aware that the 16 “GPU-assigned” lanes are coming directly from the CPU (including when doing 2x8, if the board is designed in this way – the GPU-assigned lanes aren’t what I’m getting at here).

So yes, motherboards typically do implement more IO connectivity than can be used simultaneously, though they will try to avoid disabling USB ports or dropping their speed since regular customers will not understand why.

This doesn’t really address what I was getting at though. The OP’s point was basically “the reason there isn’t more USB is because there’s not enough bandwidth - here are the numbers”. The missing bandwidth they’re mentioning is correct, but the reality is that we already design boards with more ports than bandwidth - hence why it doesn’t seem like a great answer despite being a helpful addition to the discussion.

permalink
report
parent
reply
2 points

Not al usb c ports have to gen 2.2, just a few 3.0 ports would be neat.

permalink
report
parent
reply
2 points
*

Nah, they usually advertise one USB-C port with full speed and that is the only one who gets it, even if it has 2, 3 or even 4x.

Btw, the DeskMini is the only full-spec PC i know of, which doesn’t use additional chipsets for I/O. There may be a few more boards like this, dunno, but additional I/O chipsets are incredibly common.

permalink
report
parent
reply
79 points

USB A is still really common, especially for plug in peripherals…

permalink
report
reply
1 point
*

*more common

permalink
report
parent
reply
29 points
*

Am I throwing away all my mice, keyboards, DAC, digital pens, and other peripherals just so I can have a connector with more bandwidth than I’ll ever need? Nah.

Am I buying them or adapters all over again just so I can be compatible with a new universal standard that I don’t need? Double nah.

KVM switches, or breakout hubs that these devices plug into, then a single USB c device goes to the computer is the most logical avenue for a migration. But this will take a long time. Most people don’t even have that kind of luxury.

permalink
report
reply
3 points

On the other side of that, I’m already stuck throwing away all my Lightning cables and chargers, and ideally want to change only once. Why is it so hard to jump right to C for everything?

permalink
report
parent
reply
11 points

What on earth would possess folks to replace their often expensive existing peripherals for no benefit? To totally get rid of USB-A a person will either be out a bunch of money or be stuck with having to keep track of adapters for all their devices they can currently just plug in. An industry move to do so would necessitate the creation of a huge amount of e-waste and would net everyone else precisely nothing.

USB-C is great for mobile devices as it’s small, relatively robust, easier to connect, and does pretty much everything from power deliver to video to connecting any device imaginable. Desktops (and even laptops really) don’t need to place such a premium on port size. Laptops and other mobile devices standardizing on USB-C for power is great. We can charge all our devices from the same charger. Fantastic!

Making 20+ years of working equipment harder to use and forcing billions of people to buy stuff they don’t need (and that many can’t afford) would be wild.

Expect to continue seeing USB-A for a long, long time. No need to replace anything with a USB-C version until it breaks (and maybe not even then).

permalink
report
parent
reply
3 points

sure, but some people are already in a position where they already have only USB-C (me). I have adapters for the USB-A ports and it sucks. Just let me choose to get rid of the old shit that I don’t need please

permalink
report
parent
reply
1 point

If you had multiple USB-C ports, you’d have the option of switching whoever you needed to replace something. No one ever said you had to throw everything out and start over

permalink
report
parent
reply
2 points

But we’re not at the point of debating whether users should replace all of their devices. If motherboards with a single USB-C are so common, we’re actually at a place where we’re expecting users to buy all their new peripherals to be USB-A as well.

permalink
report
parent
reply
25 points

Usbc connectors are expensive and more difficult to drive. Usb-a connectors are cheap and easy to drive

permalink
report
reply
20 points

Not to mention the numerous amount of accessories that use USB-A. My keyboard, mouse, and flash drives all use USB-A.

In my cable collection, odds are that if a cable has USB-C on one end, then either USB-A or C is on the other end. That means every other connector still requires USB-A or a dongle.

USB-A‘s longevity (~20 years) basically ensures that until it’s much cheaper to use USB-C, it won’t replace USB-A.

permalink
report
parent
reply

Technology

!technology@lemmy.world

Create post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


Community stats

  • 18K

    Monthly active users

  • 11K

    Posts

  • 506K

    Comments