I just had a random thought: a common pattern in Rust is to things such as:

let vec_a: Vec<String> = /* ... */;
let vec_b: Vec<String> = vec_a.into_iter().filter(some_filter).collect();

Usually, we need to be aware of the fact that Iterator::collect() allocates for the container we are collecting into. But in the snippet above, we’ve consumed a container of the same type. And since Rust has full ownership of the vector, in theory the memory allocated by vec_a could be reused to store the collected results of vec_b, meaning everything could be done in-place and no additional allocation is necessary.

It’s a highly specific optimization though, so I wonder if such a thing has been implemented in the Rust compiler. Anybody who has an idea about this?

2 points

The standard library does have some specialisation internally for certain iterators and collection combinations. Not sure if it will optimise that one specifically, but Vec::into_iter().collect::<Vec>() is optimised (it may look silly, but it comes up with functions returning impl Iterator

permalink
report
reply
2 points

I thought this was the point of vec.drain(..).collect().

permalink
report
reply
29 points

This blog post goes into some specifics of Rust reusing Vec allocations and some of the consequences. I think it’s really worth a read to better understand Vecs. From what I understand, it is possible that Rust will reuse the allocation of vec_a in your case, but it ultimately is quite complicated.

permalink
report
reply
9 points

That was a super interesting and informative read! Exactly what I was hoping to find when I posted this, thanks!

permalink
report
parent
reply
15 points

I think the better solution would be to use Vec::retain().

permalink
report
reply
9 points

I don’t know and don’t think so, but what you are doing is better done with retain anyways.

permalink
report
reply
5 points

I mean, the actual operation is just an example, of course. Feel free to make it a .map() operation instead. The strings couldn’t be reused then, but the vector’s allocation still could… in theory.

permalink
report
parent
reply
7 points
*

map() can still be used with Vec::iter_mut(), filter_map() can be replaced with Vec::retain_mut().

permalink
report
parent
reply
4 points
*

Yeah, that’s helpful if I would be currently optimizing a hot loop now. But I was really just using it as an example. Also, retain_mut() doesn’t compose as well.

I’d much rather write:

let vec_a: Vec<String> = /* ... */;
let vec_b: Vec<String> = vec_a
    .into_iter()
    .filter(some_filter)
    .map(some_map_fn)
    .collect();

Over:

let mut vec_a: Vec<String> = /* ... */;
vec_a.retain_mut(|x| if some_filter(x) {
    *x = some_map_fn(*x); // Yikes, cannot move out of reference.
    true
} else {
    false
});

And it would be nice if that would be optimized the same. After all, the point of Rust’s iterators is to provide zero-cost abstractions. In my opinion, functions like retain_mut() represent a leakiness to that abstraction, because the alternative turns out to not be zero cost.

permalink
report
parent
reply

Rust

!rust@programming.dev

Create post

Welcome to the Rust community! This is a place to discuss about the Rust programming language.

Wormhole

!performance@programming.dev

Credits
  • The icon is a modified version of the official rust logo (changing the colors to a gradient and black background)

Community stats

  • 617

    Monthly active users

  • 777

    Posts

  • 3.3K

    Comments