Svante
Tja.
I’ll get the lighter fluid.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
Anyway, I don’t want anyone to stop building renewables, but I don’t want anyone to stop building nuclear either. We need every option.
(Even if nuclear is a safer bet.)
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
You seem to assume that only one reactor will be built at a time, and nothing learned. But that’s not how you do it, and not how France already did it, obviously.
I have a little problem understanding how one can acknowledge the success of the Messmer plan and at the same time claim it unrepeatable.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
There are already single events of more than a few hours where sunshine and wind are lacking. But that is only the immediate perspective; you need to integrate over at least several years to see the longer-term shortages that need to be handled as well. And that is quite obviously much more than a few hours. Therefore, I have some problems regarding such studies as credible.
@MattMastodon @matthewtoad43 @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
This is just the fact: there are, at the current state, only two energy sources that can form the backbone of a decarbonized grid, and they have proved it, hydro and nuclear.
Hydro is not available everywhere, however, as it has really large area demand, and geological requirements.
And I repeat: nuclear /is/ very capable of load following.
And I repeat: batteries at the needed scalability don’t exist (yet?).
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
I’m not saying 100% nuclear would be best, but I /know/ that 100% volatiles + storage + transmission are practically impossible.
Up to around 40% volatiles can be compensated by a large grid. The rest can, with current or near-future technology, be nuclear and/or hydro. With middle-future technology, this /might/ be gradually replaced by more volatiles+storage+transmission.
@MattMastodon @matthewtoad43 @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
Sorry to interrupt, but nothing about this is »trivial«.
Also, you must compare the complete system. Let’s summarize just two options:
- Nuclear power plants, and the grid as is.
- Wind turbines, solar panels, plus a multiple of the current grid, plus hypothetical storage tech none of which has passed the pilot stage yet.
What is your bet? How do you think decarbonization has /already/ been achieved?
@MattMastodon @Pampa @AlexisFR @Wirrvogel @Sodis
Yes, shipping in general, especially long-distance, is a huge issue. But it is only solvable through economics. A solution must be at least as effective and efficient (from a business perspective) as the current dirty oil burning, /and/ significantly better at something to overcome inertia.
My bet would be #nuclear power for that: already being done for decades (mostly military though), and the environment seems ideal (no cooling issues).
@MattMastodon @Pampa @AlexisFR @Wirrvogel @Sodis
Without klicking anything, 61 million € is practically nothing, so I do not expect this to be a big, impactful project. It might be a nice little extra income from surplus hydro power (Norway is almost completely running on hydro).
Then looking into the links, this supports just a small fleet of up to 40 ships. Which is good.
I think it can be a good way for this niche, and it might be one little thing less to worry about.
@MattMastodon @Pampa @AlexisFR @Wirrvogel @Sodis
A few points to factor in:
- A nuclear power station has a much longer lifetime than batteries, solar panels, and wind turbines.
- You need not only the batteries, but also the panels/turbines to fill them.
- Conversion and storage losses are significant. Attached is a rough overview for H₂.
- Transmission infrastructure costs to/from individual cars are significant.
- 24 h is not enough by far to balance out usual fluctuations.
@MattMastodon @Sodis My thinking about biomass: if we don’t burn it, it will not be released as CO₂ to the atmosphere.
I guess the thinking about biomass was: if we only burned biomass, not fossil mass, then we’d have an equilibrium and no problem. But saying that biomass is net-zero gets it backwards. The CO₂ doesn’t care where it’s coming from. It is our task to produce as little CO₂ as possible. The goal is to get below the amount of CO₂ /captured/ by biological processes.