You are viewing a single thread.
View all comments View context
3 points

The problem goes away easily once we understand the limits of the decimal system, but we need to state that the system is limited!

But the system is not limited: It has a representation for any rational number. Subjectively you may consider it inelegant, you may consider its use in some area inconvenient, but it is formally correct and complete.

I bet there’s systems where rational numbers have unique representations (never looked into it), and I also bet that they’re awkward AF to use in practice.

This is a workaround of the decimal flaw using algebraic logic.

The representation has to reflect algebraic logic, otherwise it would indeed be flawed. It’s the algebraic relationships that are primary to numbers, not the way in which you happen to put numbers onto paper.

And, honestly, if you can accept that 1/3 == 2/6, what’s so surprising about decimal notation having more than one valid representation for one and the same number? If we want our results to look “clean” with rational notation we have to normalise the fraction from 2/6 to 1/3, and if we want them to look “clean” with decimal notation we, well, have to normalise the notation, from 0.999… to 1. Exact same issue in a different system, and noone complains about.

permalink
report
parent
reply
0 points

Decimals work fine to represent numbers, it’s the decimal system of computing numbers that is flawed. The “carry the 1” system if you prefer. It’s how we’re taught to add/subtract/multiply/divide numbers first, before we learn algebra and limits.

This is the flawed system, there is no method by which 0.999… can become 1 in here. All the logic for that is algebraic or better.

My issue isn’t with 0.999… = 1, nor is it with the inelegance of having multiple represetations of some numbers. My issue lies entirely with people who use algebraic or better logic to fight an elementary arithmetic issue.

People are using the systems they were taught, and those systems are giving an incorrect answer. Instead of telling those people they’re wrong, focus on the flaws of the tools they’re using.

permalink
report
parent
reply
2 points
*

This is the flawed system, there is no method by which 0.999… can become 1 in here.

Of course there is a method. You might not have been taught in school but you should blame your teachers for that, and noone else. The rule is simple: If you have a nine as repeating decimal, replace it with a zero and increment the digit before that.

That’s it. That’s literally all there is to it.

My issue lies entirely with people who use algebraic or better logic to fight an elementary arithmetic issue.

It’s not any more of an arithmetic issue than 2/6 == 1/3: As I already said, you need an additional normalisation step. The fundamental issue is that rational numbers do not have unique representations in the systems we’re using.

And, in fact, normalisation in decimal representation is way easier, as the only case to worry about is indeed the repeating nine. All other representations are unique while in the fractional system, all numbers have infinitely many representations.

Instead of telling those people they’re wrong, focus on the flaws of the tools they’re using.

Maths teachers are constantly wrong about everything. Especially in the US which single-handedly gave us the abomination that is PEMDAS.

Instead of blaming mathematicians for talking axiomatically, you should blame teachers for not teaching axiomatic thinking, of teaching procedure instead of laws and why particular sets of laws make sense.

That method I described to get rid of the nines is not mathematical insight. It teaches you nothing. You’re not an ALU, you’re capable of so much more than that, capable of deeper understanding that rote rule application. Don’t sell yourself short.


EDIT: Bijective base-10 might be something you want to look at. Also, I was wrong, there’s way more non-unique representations: 0002 is the same as 2. Damn obvious, that’s why it’s so easy to overlook. Dunno whether it easily extends to fractions can’t be bothered to think right now.

permalink
report
parent
reply
0 points
*

I don’t really care how many representations a number has, so long as those representations make sense. 2 = 02 = 2.0 = 1+1 = -1+3 = 8/4 = 2x/x. That’s all fine, we can use the basic rules of decimal notation to understand the first three, basic arithmetic to understand the next three, and basic algebra for the last one.

0.999… = 1 requires more advanced algebra in a pointed argument, or limits and infinite series to resolve, as well as disagreeing with the result of basic decimal notation. It’s steeped in misdirection and illusion like a magic trick or a phishing email.

I’m not blaming mathematicians for this, I am blaming teachers (and popular culture) for teaching that tools are inflexible, instead of the limits of those systems.

In this whole thread, I have never disagreed with the math, only it’s systematic perception, yet I have several people auguing about the math with me. It’s as if all math must be regarded as infinitely perfect, and any unbelievers must be cast out to the pyre of harsh correction. It’s the dogmatic rejection I take issue with.

permalink
report
parent
reply

Maths teachers are constantly wrong about everything

Very rarely wrong actually.

the abomination that is PEMDAS

The only people who think there’s something wrong with PEMDAS are people who have forgotten one or more rules of Maths.

permalink
report
parent
reply

those systems are giving an incorrect answer

When there’s an incorrect answer it’s because the user has made a mistake.

Instead of telling those people they’re wrong

They were wrong, and I told them where they went wrong (did something to one side of the equation and not the other).

permalink
report
parent
reply
-1 points

The system I’m talking about is elementary decimal notation and basic arithmetic. Carry the 1 and all that. Equations and algebra are more advanced and not taught yet.

There is no method by which basic arithmetic and decimal notation can turn 0.999… into 1. All of the carry methods require starting at the smallest digit, and repeating decimals have no smallest digit.

If someone uses these systems as they were taught, they will get told they’re wrong for doing so. If we focus on that person being wrong, then they’re more likely to give up on math entirely, because they’re wrong for doing as they were taught. If we focus on the limitstions of that system, then they have the explanation for the error, and an understanding of why the more complicated system is preferable.

All models are wrong, but some are useful.

permalink
report
parent
reply

Science Memes

!science_memes@mander.xyz

Create post

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don’t throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

Community stats

  • 12K

    Monthly active users

  • 3.6K

    Posts

  • 88K

    Comments