Is this a question?
We haven’t even come close to exhausting 64-bit addresses yet. If you think the bit number makes things faster, it’s technically the opposite.
It’s a link to an article I found interesting. It basically details why we’re still using 64-bit CPUs, just as you mentioned.
Yeah, 64 bit handles almost all use cases we have. Sometimes we want double the precision (a double) or length (a long), but we can do that without being 128-bit. It’s harder to do half. Sure, it’d be slightly faster for some things, but it’s not significant.
And you can get 128-bit data to the CPU, so those things can be fast if we need them to be.
We don’t even have true 64-bit addressing yet. x86-64 uses only 48 bits of a 64 bit address and 64-bit ARM can use anything between 40 and 52 depending on the specific configuration.
Is this a question?
For the people who don’t know the answer? Yes.
Not everything you see is intended for your consumption. Let people enjoy learning things.
I totally agree. I know a teacher who who likes to say:
“I believe there really is no such thing as a dumb question. As long as it’s an honest question (not rhetorical or sarcastic), then it’s a genuine request for more information. So even if it’s coming from a place of extreme ignorance, asking a question is an attempt to learn something, and the effort should be applauded.”
That would be like 6 minutes abs.
so i guess the next bit after 64 cpu is qu-bit, quantum bit
Quantum computers won’t displace traditional computers. There’s certain niche use-cases for which quantum computers can become wildly faster in the future. But for most calculations we do today, they’re just unreliable. So, they’ll mostly coexist.
Presumably you’d have a QPU in your regular computer, like with other accelerators for graphics etc, or possibly a tiny one for cryptography integrated in the CPU
There would have to be some kind of currently unforseen breakthroughs before something like that would be even remotely possible. In all likelihood, quantum computing would stay in specialized data centers. For the problems quantum would solve, there is really no advantage to having it local anyways.
Because computers have come even close to needing more than 16 exabytes of memory for anything. And how many applications need to do basic mathematical operations on numbers greater than 2^64. Most applications haven’t even exceeded the need for 32 bit operations, so really the push to 64bit was primarily to appease more than 4GB of memory without slow workarounds.
Tons of computing is done on x86 these days with 256 bit numbers, and even 512-bit numbers.
Being pedantic, but…
The amd64 ISA doesn’t have native 256-bit integer operations, let alone 512-bit. Those numbers you mention are for SIMD instructions, which is just 8x 32-bit integer operations running at the same time.
The ISA does include sse2 though which is 128 bit, already more than the pointer width. They also doubled the number of xmm registers compared to 32-bit sse2.
Back in the days using those instructions often gained you nothing as the CPUs didn’t come with enough APUs to actually do operations on the whole vector in parallel.
Ah fair enough, I figured that since the registers are 512 bit, that they’d support 512 bit math.
It does look like you can load/store and do binary operations on 512-bit numbers, at least.
Not much difference between 8x64 and 512 when it comes to integer math, anyways. Add and subtract are completely identical.
You can always combine integer operations in smaller chunks to simulate something that’s too big to fit in a register. Python even does this transparently for you, so your integers can be as big as you want.
The fundamental problem that led to requiring 64-bit was when we needed to start addressing more than 4 GB of RAM. It’s kind of similar to the problem of the Internet, where 4 billion unique IP addresses falls rather short of what we need. IPv6 has a host of improvements, but the massively improved address space is what gets talked about the most since that’s what is desperately needed.
Going back to RAM though, it’s sort of interesting that at the lowest levels of accessing memory, it is done in chunks that are larger than 8 bits, and that’s been the case for a long time now. CPUs have to provide the illusion that an 8-bit byte is the smallest addressible unit of memory since software would break badly were this not the case, but it’s somewhat amusing to me that we still shouldn’t really need more than 32 bits to address RAM at the lowest levels even with the 16 GB I have in my laptop right now. I’ve worked with 32-bit microcontrollers where the byte size is > 8 bits, and yeah, you can have plenty of addressible memory in there if you wanted.
I know a google engineer who was saying they’re having to update their code bases to handle > 16 exabytes of storage, if you can imagine. But yeah, that’s storage, not RAM.
32 bit CPU’s having difficulty accessing greater than 4gb of memory was exclusively a windows problem.
Interesting! Do you have a link to a write up about this? I don’t know anything about the windows memory manager
Only slightly related, but here’s the compiler flag to disable an arbitrary 2GB limit on x86 programs.
Finding the reason for its existence from a credible source isn’t as easy, however. If you’re fine with an explanation from StackOverflow, you can infer that it’s there because some programs treat pointers as signed integers and die horribly when anything above 7FFFFFFF gets returned by the allocator.
It’s a silly flag to use as it only works when running 32-bit Windows applications on 64-bit Windows, and if you’re compiling from source, you should also have the option to just build a 64-bit binary in the first place. It made a degree of sense years ago when people actually used 32-bit Windows sometimes (which was usually just down to OEMs installing the wrong version on prebuilt PCs could have supported 64-bit) if you really wanted to only have one binary or you consumed a precompiled third party library and had to match its architecture.
Intel PAE if the answer, but it still came with other issues, so 64 was still the better answer.
Also the entire article comes down to simple math.
Bits is the number of digits.
So like a 4 digit number maxes out at 9999 but an 8 digit number maxes out at 99 999 999
So when you double the number of digits, the max size available is exponential. 10^4 bigger in this case. It just sounds small because you’re showing that the exponent doubles.
10^4 is WAY smaller than 10^8
It was actually 3gb because operating systems have to reserve parts of the memory address space for other things. It’s more difficult for all 32bit operating systems to address above 4gb just most implemented additional complexity much earlier because Linux runs on large servers and stuff. Windows actually had a way to switch over to support it in some versions too. Probably the NT kernels that where also running on servers.
A quick skim of the Wikipedia seems like a good starting point for understanding the old problem.
Wow they just…disabled all RAM over 3 GB because some drivers had hard coded some mapped memory? Jfc
You still had a 4GB memory limit for processes, as well as a total memory limit of 64GB. Especially the first one was a problem for Java apps before AMD introduced 64bit extensions and a reason to use Sun servers for that.
Yeah I acknowledged the shortcomings in a different comment.
It was a duct take solution for sure.
Your other posts didn’t reply to your claim that it is a Windows only problem. Linux did and some distros (Raspberry Pi) have the same limitations as Windows 95.
32 bit Windows XP got PAE in 2001, two years after Linux. 64 bit Windows came out in 2005.