Yup meltdowns happen sometimes. AND there’s the century-long legacy of radioactive waste!
Oh joy, I get to bust out these bad boys again! https://www.youtube.com/watch?v=4aUODXeAM-k https://www.youtube.com/watch?v=lhHHbgIy9jU
There’s also that one guy who touched the hot part and is now using that tiny blister to conduct a decades-long smear campaign against the kinds of pots used at Three Mile Island.
kyle hill is interesting to me because when he is making videos about nuclear it is either the most terrifying nuclear horror story yet or facts and statistics about how safe nuclear is. I personally believe nuclear to be a super safe and efficient way to create energy, its just something I noticed. Makes me think about how common coal accidents are and how little they are covered compared to something supposedly scary like nuclear.
The dangerous radiation disappears much much sooner then that. And if its millions of years, the local life would adapt, more then it already has. Interesting related info: https://en.m.wikipedia.org/wiki/Radiotrophic_fungus
I agree. We should deal with nuclear waste in the same way we handle the waste from other fossil fuels: by spreading it over the entire planet in a thin, even coating so that everyone is equally affected!
Back in middle school, our science teacher decided to make the class do a debate about different types of energy sources in order to learn about their advantages and disadvantages. I was on the pro-nuclear team, and we were wracking our brains trying to come up with a rebuttal to “but what about the waste?” until some madlad basically came up with this great argument:
We can just dump all of the nuclear waste on Belgium. It will take a really long time before it fills up, and nobody cares about Belgium anyway
The anti-nuclear team had no good response, and we actually got a point for that argument because we looked up the relevant statistics (nuclear waste output, belgium surface area, etc.) and calculated exactly how long it would take to turn belgium into a radioactive wasteland.
Luckily waste storage is a solved problem.
Drill hole in bedrock, put waste in hole, backfill with clay.
You’re so right - we should just pump all our crap out into the biosphere instead and keep burning coal.
Solar and wind are currently both cheaper than coal, and rapidly getting cheaper.
Nuclear is more expensive, and the cost is growing. There will be almost certainly be no private investment in nuclear in the future unless it’s ideologically driven.
https://en.m.wikipedia.org/wiki/Cost_of_electricity_by_source
So. When I was in my junior year of college, the dorm I lived in was built more like a high occupancy apartment rather than a college dorm room, it had a living room and a kitchenette. No built-in stove but we were allowed to have a hot plate, so I went to K-Mart and bought a double burner one.
For some reason, one of my roommates had a cereal bowl that was in the shape of a saucepan. It was made of plastic, but it was black and had a handle. One day I walk into the apartment to an ungodly chemical smell and exactly the image above.
Probably the plastic “pan” was a children’s toy that made its way into an alternate use. I probably still have a few lying around from the toddler days.
Project PACER:
Water is last year’s news. Helium is the new water now.
Are there any molten salt reactor designs that do not use water as a coolant?
to be fair ; its both.
It is not the top one in the typical usage of the word “nuclear energy.” Sure, it is nuclear energy, but that normally refers to electrical infrastructure, not nuclear weapons. Nuclear electricity is pretty much always just heating water up in a safe and controlled manner, and using that to spin a turbine.
Until something goes wrong and it is not safe and controlled anymore. You know, because of the whole exponential chain reaction thing.
So do you still believe in bloodletting to cure colds or the earth being 10,000 years old?
meltdowns do not resemble bombs at all. nor are they really possible either.
that’s the thing though, the exponential chain reaction isn’t possible.
The problem is that when fuel breaks the strictly controlled fuel rod environment, it stops being cooled properly, and regulating it becomes more interesting (not impossible, there are some clever solutions out there, look at metal cooled reactors for example) and as a result, the spicy particle generation tends to break containment, which is why we have things like PCVs, which contain the corium long enough to at least prevent the elephants foot troll, which is then contained by the secondary containment (the building around it) which is also contained by the rest of the building, surrounding the containment building.
It’s pretty hard to fuck up a reactor. Even harder when the idle state of the reactor is safe, as is with metal cooled reactors. Those are some of the most promising designs, because you can literally just do nothing with them, and nothing bad happens.