AI-screened eye pics diagnose childhood autism with 100% accuracy::undefined

151 points
*

Bull.Shit.

Define the criteria, have it peer reviewed and diagnosed, or else we will ALL be diagnosed with Autism soon enough.

permalink
report
reply
32 points

For real.

It looks like the actual number of candidates were 958 and only 15% of that number were reserved for testing, the rest were used in AI training data. So in reality only 144 people were tested with the AI and there’s no information from the article on how many people were formally diagnosed of this subset.

permalink
report
parent
reply
27 points

The article seems to be published in JAMA network open, and as far as I can tell that publication is peer reviewed?

permalink
report
parent
reply
6 points

Yeah, read it. No other confirmation.

permalink
report
parent
reply
21 points

But it has been peer reviewed? And the criteria have been defined?

permalink
report
parent
reply
19 points

At the bottom of the article, the paper has been published in a peer reviewed journal.

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2812964

permalink
report
parent
reply
5 points

You can’t just believe something because it’s been peer-reviewed. It is an absolutely minimal requirement for credibility these days but the system does not work well at all.

In this case, the authors acknowledge the need for more studies to establish how generalisable their findings are. It’s the first attempt at building a tool, it doesn’t mean anything at all until the findings are reproduced by an independent group.

permalink
report
parent
reply
14 points

totally agree, peer reviewing is the bare minimum, but it IS a step above any old article published on a random website. also would like to acknowledge the limitations of this particular study. fair criticism and is something the authors brought up in their paper too.

my reply was in response to the original commenter mentioning that there was no link to the study at all.

permalink
report
parent
reply
7 points
Deleted by creator
permalink
report
parent
reply
2 points

Totally agree, like for those vaccins. It’s not because they are published they are safe ! /s.

permalink
report
parent
reply
14 points

They do point to where the model was making its decision based off of, which was the optical disc, which they go over in the discussion with multiple previous studies showing biological differences between ASD and TD development.

You know, in the peer reviewed paper linked at the bottom of OP’s article on it.

permalink
report
parent
reply
4 points
*

deleted

permalink
report
parent
reply
61 points

It’s apparently good at 100% at classifying autism in groups that have already been flagged for high chance of ASD. It is not good at just any old picture.

permalink
report
reply
16 points

Retinal photographs of individuals with ASD were prospectively collected between April and October 2022, and those of age- and sex-matched individuals with TD were retrospectively collected between December 2007 and February 2023.

TD stands for “typical development.”

So it correctly differentiated between children diagnosed with ASD and those without it with 100% accuracy.

The confounding factors are that they excluded children with ASD and other issues that might have muddied the waters, so it may not be 100% effective at distinguishing between all cases of ASD vs TD.

There’s no reason to think that given a retinal photograph of someone who hasn’t been diagnosed with ASD that it would fail to reject the diagnosis or confirm it if ASD was the only factor.

And this appears to be based on biological differences that have already been researched:

Considering that a positive correlation exists between retinal nerve fiber layer (RNFL) thickness and the optic disc area,32,33 previous studies that observed reduced RNFL thickness in ASD compared with TD14-16 support the notable role of the optic disc area in screening for ASD. Given that the retina can reflect structural brain alterations as they are embryonically and anatomically connected,12 this could be corroborated by evidence that brain abnormalities associated with visual pathways are observed in ASD. First, reduced cortical thickness of the occipital lobe was identified in ASD when adjusted for sex and intelligence quotient.34 Second, ASD was associated with slower development of fractional anisotropy in the sagittal stratum where the optic radiation passes through.35 Interestingly, structural and functional abnormalities of the visual cortex and retina have been observed in mice that carry mutations in ASD-associated genes

And given that the heat maps of what the model was using to differentiate were almost entirely the optical disc, I’m not sure why so many here are scoffing at this result.

It wasn’t 100% at identifying severity or more nuanced differences, but was able to successfully identify whether the retinal image was from someone diagnosed with ASD or not with 100% success rate in the roughly 150 test images split between the two groups.

permalink
report
parent
reply
49 points

100% ? That’s a fucking lie. Nothing in life is 100%

permalink
report
reply
24 points

Are you 100% sure of that?

permalink
report
parent
reply
13 points

A convolutional neural network, a deep learning algorithm, was trained using 85% of the retinal images and symptom severity test scores to construct models to screen for ASD and ASD symptom severity. The remaining 15% of images were retained for testing.

It correctly identified 100% of the testing images. So it’s accurate.

permalink
report
parent
reply
28 points

100% accuracy is troublesome. Literally statistics 101 stuff, they tell you in no uncertain terms, never, never trust 100% accuracy.

You can be certain to some value of p. That number is never 0. .001 is suspicious as fuck, but doable. .05 is great if you have a decent sample size.

They had fewer than 1000 participants.

I just don’t trust it. Neither should they. Neither should you. Not at least until someone else recreates the experiments and also finds this AI to be 100% accurate.

permalink
report
parent
reply
20 points

What they’re saying, as far as I can tell, is that after training the model on 85% of the dataset, the model predicted whether a participant had an ASD diagnosis (as a binary choice) 100% correctly for the remaining 15%. I don’t think this is unheard of, but I’ll agree that a replication would be nice to eliminate systemic errors. If the images from the ASD and TD sets were taken with different cameras, for instance, that could introduce an invisible difference in the datasets that an AI could converge on. I would expect them to control for stuff like that, though.

permalink
report
parent
reply
7 points

Then somebody’s lying with creative application of 100% accuracy rates.

The confidence interval of the sequence you describe is not 100%

permalink
report
parent
reply
10 points

From TFA:

For ASD screening on the test set of images, the AI could pick out the children with an ASD diagnosis with a mean area under the receiver operating characteristic (AUROC) curve of 1.00. AUROC ranges in value from 0 to 1. A model whose predictions are 100% wrong has an AUROC of 0.0; one whose predictions are 100% correct has an AUROC of 1.0, indicating that the AI’s predictions in the current study were 100% correct. There was no notable decrease in the mean AUROC, even when 95% of the least important areas of the image – those not including the optic disc – were removed.

They at least define how they get the 100% value, but I’m not an AIologist so I can’t tell if it is reasonable.

permalink
report
parent
reply
0 points

Yeah, from the way they wrote, it sounds to me they indirectly trained on the test set

permalink
report
parent
reply
8 points

Other aspects weren’t 100%, such as identifying the severity (which was around 70%).

But if I gave a model pictures of dogs and traffic lights, I’d not at all be surprised if that model had a 100% success rate at determining if a test image was a dog or a traffic light.

And in the paper they discuss some of the prior research around biological differences between ASD and TD ocular development.

Replication would be nice and I’m a bit skeptical about their choice to use age-specific models given the sample size, but nothing about this so far seems particularly unlikely to continue to show similar results.

permalink
report
parent
reply
7 points

Not even your statement?

permalink
report
parent
reply
5 points

Could we reasonably expect an AI to something right 100% if a human could do it with 100%?

Could you tell if someone has down syndrome pretty obviously?

Maybe some kind of feature exists that we aren’t aware of

permalink
report
parent
reply
4 points

Except death and taxes

permalink
report
parent
reply
9 points

taxes

  • Only if you’re poor
permalink
report
parent
reply
21 points

I’m honestly not sure if this whole thing is a good thing or a freaking scary thing.

At the back of the eye, the retina and the optic nerve connect at the optic disc. An extension of the central nervous system, the structure is a window into the brain and researchers have started capitalizing on their ability to easily and non-invasively access this body part to obtain important brain-related information.

permalink
report
reply
7 points
*

Column A: yes

Column B: also yes

permalink
report
parent
reply
4 points

It’s way less scary in the actual linked paper:

Given that the retina can reflect structural brain alterations as they are embryonically and anatomically connected,12 this could be corroborated by evidence that brain abnormalities associated with visual pathways are observed in ASD.

TLDR: Abnormal developments in the brain that have visual components may closely correlate with abnormal developments in the eye.

permalink
report
parent
reply
2 points

I guess it’s time to genocide the normies. ¯\_(ツ)_/¯

permalink
report
parent
reply
15 points

Hold the fuck up. What exactly is the marker?

permalink
report
reply
25 points

A big problem with this type of ai is they are a black box.

We don’t know what they are identifying. We give it input and it gives output. What exactly is going on internally is a mystery.

permalink
report
parent
reply
32 points

We don’t know what they are identifying. We give it input and it gives output. What exactly is going on internally is a mystery.

Counterintuitively that’s also where the benefit comes from.

The reason most AI is powerful isn’t because its can think like humans, its because it doesn’t. It makes associations that humans don’t simply by consumption of massive amounts of data. We humans tell it “Here’s a bajillion sample examples of X. Okay, got it? Good. Now here’s 10 bajillion samples we don’t know if they are X or not. What do you, AI, think?”

AI isn’t really a causation machine, but instead a correlation machine. The AI output effectively says “This thing you gave me later has some similarities to the thing you gave me before. I don’t know if the similarities mean anything, but they ARE similarities”.

Its up to us humans to evaluate the answer AI gave us, and determine if the similarities it found are useful or just coincidental.

permalink
report
parent
reply
1 point

Sure, but if we could take the model generated by the AI and convert it into a set of quantifiable criteria - i.e., what is being correlated - we could use our human abilities of associative thought to gain an understanding of why this correlation may exist, possibly leading to better understanding of Autism overall.

permalink
report
parent
reply

Incidentally to train AI, you need a bajillion samples of X and a bajillion-plus samples of not-X.

permalink
report
parent
reply
5 points
*

Not so much of a mystery:

There was no notable decrease in the mean AUROC, even when 95% of the least important areas of the image – those not including the optic disc – were removed.

So we know that it relates to the optic disc.

Edit: Repeated in the conclusions of the study itself:

Our findings suggest that the optic disc area is crucial for differentiating between individuals with ASD and TD.

Edit 2: Which is given more background as to what may be going on and being picked up by the model:

Considering that a positive correlation exists between retinal nerve fiber layer (RNFL) thickness and the optic disc area,32,33 previous studies that observed reduced RNFL thickness in ASD compared with TD14-16 support the notable role of the optic disc area in screening for ASD. Given that the retina can reflect structural brain alterations as they are embryonically and anatomically connected,12 this could be corroborated by evidence that brain abnormalities associated with visual pathways are observed in ASD. First, reduced cortical thickness of the occipital lobe was identified in ASD when adjusted for sex and intelligence quotient.34 Second, ASD was associated with slower development of fractional anisotropy in the sagittal stratum where the optic radiation passes through.35 Interestingly, structural and functional abnormalities of the visual cortex and retina have been observed in mice that carry mutations in ASD-associated genes, including Fmr1, En2, and BTBR,36-38 supporting the idea that retinal alterations in ASD have their origins at a low level.

permalink
report
parent
reply

Technology

!technology@lemmy.world

Create post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


Community stats

  • 16K

    Monthly active users

  • 12K

    Posts

  • 557K

    Comments