Excluding all the ancillary services, including the lasers that maintained the plasma, which was the principle part of this latest test.
Factoring everything in, they’re at about 15% return.
This is still very good for this stage, but the publications are grossly misleading.
I want to add that experimental reactors used for scientific research might never become net energy positive and that would be fine. Their purpose isn’t to generate profit, it’s to learn more about the physics, so it will be more valuable for them to be adaptable than efficient.
However, that doesn’t mean that you can’t take a configuration that has been shown to have potential and make a reactor that is more efficient than adaptable and use that to generate power for the electrical grid.
Basically, they have two different purposes.
Absolutely. Also, the fact that the reactor was only running for a short time plays a part. Usually there is a significant energy cost in starting and stopping, which is offset by running for a long time. However, these reactors are not designed for continued running.
It’s all a process of development, and even though the article is perhaps a little sensationalist, they’re making good progress.
but the publications are grossly misleading.
I think you’re only referencing the headline, the article itself clearly states what you said
When one says a publication is grossly misleading, it certainly implies the entire publication
When I see “publication” I assume it’s the actual scientific paper and not the article reporting on said paper.
That’s what I came to the comments to find. Thank you. Would have been much bigger news if it was net energy positive.
15% return is still net energy positive isn’t it? Or is that not 15% above the input?
From another article: “In an experiment on 5 December, the lab’s National Ignition Facility (NIF) fusion reactor generated a power output of 3.15 megajoules from a laser power output of 2.05 megajoules – a gain of around 150 per cent. However, this is far outweighed by the roughly 300 megajoules drawn from the electrical grid to power the lasers in the first place.”
I can’t read the full article (paywalled for me) but it references the National Ignition Facility so the way it goes is super lasers blast a tiny hydrogen thing and that creates a tiny bit of fusion that releases the energy. The energy of the laser blast is what’s being called the input and the fusion energy released the output. What is misleading is that a greater amount of energy was used create the laser blast than the laser blast itself outputs. If you consider the energy that went into creating the laser blast the input (rather than the laser blast itself), then it’s usually not a net positive energy release.
If anything has been consistent about fusion its always them desperately trying to spin babysteps and monumental leaps forward and trying to make themselves seem super clean and safe especially compared to fission.
If anything has been consistent about fusion its always them desperately trying to spin babysteps and monumental leaps forward
That’s usually the media outlets sensationalising the results to the point where the articles are grossly misleading.
trying to make themselves seem super clean and safe especially compared to fission.
That’s just a fact, no need to try. The Fusion process is inherently safe the radioactive byproducts are generally short lived and easier to handle.
Fusion is not inherently safe. It has significantly higher rate of neutron discharge for the enegy produced which can damage the reactor vessel and potential to cause nonfuel material to become radioactive.
Ontop of any power disruption of the system has the potential for radioactive plasma to escape with nothing even remotely equivalent of a SCRAM to bring it back under control.
The only reason fusion appears safe right now is because its all still developmental phase and any issues are being handwaved as prototyping issues and not treated like the actual potential catastrophes they are.
Fusion reactor SLAMS surprised scientists with it’s INCREDIBLE output
Firstly, the energy output falls far short of what would be needed for a commercial reactor, barely creating enough to heat a bath. Worse than that, the ratio is calculated using the lasers’ output, but to create that 2.1 megajoules of energy, the lasers draw 500 trillion watts, which is more power than the output of the entire US national grid. So these experiments break even in a very narrow sense of the term.
It’s so refreshing to see an article at least mention the way these tests are measured are based on the energy just in the laser itself and not the total energy used.
I agree it’s good that the article is not hyping up the idea that the world will now definitely be saved by fusion and so we can all therefore go on consuming all the energy we want.
There are still some sloppy things about the article that disappoint me though…
-
They seem to be implying that 500 TW is obviously much larger than 2.1 MJ… but without knowing how long the 500 TW is required for, this comparison is meaningless.
-
They imply that using more power than available from the grid is infeasible, but it evidently isn’t as they’ve done it multiple times - presumably by charging up local energy storage and releasing it quickly. Scaling this up is obviously a challenge though.
-
The weird mix of metric prefixes (mega) and standard numbers (trillions) in a single sentence is a bit triggering - that might just be me though.
Electricity stuff is funny because it combines metric and imperial units sometimes to make bastard measurements
Huh? Whatchu talkin bout Willis?
Watt is a Joule per second
Volts, Amps, kWh, MJ… These are all metric.
Exactly. These tests aren’t meant to create a practical solution, but to provide knowledge and insight that a) it is possible and b) exactly what is necessary to make it happen, at a physical level. Before this, it (more out than in) was all theory, but now we’re got some hard data to work with.
That’s a big step we’ve been chasing for a long, long time.
Yeah, and a good sign is that the countries with money to invest in the race all seem to be convinced we’ve got the science right and that the engineering challenges are solvable. There have been so many records broken recently we’re getting towards the end of the mile stones, hopefully soon we’ll start hearing about self sustaining experiments with records for how long they ran
At some point we’ll be able to say: …and thus, humanity created its first star.
…and accidentally incinerated its home world, as the supply dependant lunar colony could only look on in horror.
✨The End✨
I know you’re joking, but nuclear fusion is inherently safe because if it breaks there is no way to sustain a chain reaction. And is only creates mildly radioactive byproducts. So you could blow it up and it wouldn’t seriously contaminate the area.
Technically fission has a similar physical barrier to infinite meltdown. Once the water leaves the core, the reaction stops. It was called China Syndrome, and we wouldn’t have worried about it at all, had the physicist that thought it up been a bit more competent with his math skills. Unfortunately, there are plenty of other ways that the reactors that we currently use can catastrophically fail.
Nah, the Earth doesn’t have enough mass to become a star. If it did, it would already be one.
When they do they should come up with some original quote.
“The power of the sun in the palm of my hand”, something like that.
We already got plenty of nuclear fusion output with no energy input on our part. But folks dont want solar panels
What is with peoples insistence that we only ever use one kind of power generation?
Wind, solar, fusion, fission, hydro, they all have their uses. Why limit yourself like some kind of console fanboy?
Fusion is self sustained and highly scalable.
If it was practical we wouldn’t need the other forms, except for places not serviced by electrical grids.
Fission takes a long time to build and finance. It hasn’t been invested enough in. We need more green energy to replace fossil fuels faster than governments can get fusion plants up. That’s why wind, solar and hydro are and should be the preference.
Hydro needs the right geography. Solar and wind need the right local weather. Solar great in a California desert, but terrible in Scotland where wind and hydro are very effective.
There some cases where a specific technology is the best and clearest option. But when fission becomes reliable, it will cover the vast majority of use cases in the highly Industrialised nations. Everything else will be niche.
Why limit yourself like some kind of console fanboy?
Propaganda by solar bros.
It’s only the solar bros doing this because you can sell solar to the average idiot. Most people can’t own other forms of clean energy generation directly.
*minus the energy needed to make, maintain, and replace solar panels.
I support more solar installations, just calling out it isn’t free power.
As more solar is installed, the less power input we need to provide. There will be a point where all solar power required to make a solar panel will be produced by solar panels
As more solar panels are installed, more material and maintenance are required. They deteriorate over time, and require large physical areas.
I guess at that point, each panel needs to be extremely efficient to limit the space, extremely durable, made of cheap materials, easily recyclable into another panel.
True, but that’s not reliable source of energy though, specially during short and cloudy winter days when it’s most needed. Look what happened in Germany and how they became on if the biggest European polluters. The key ingredient missing is energy storage. Once that’s solved, solar panels would become much more useful.
We could massively subsidize home battery storage and this wouldn’t be an issue at all. Microgrids are the future anyway. The only reason why storage is an issue now is because it needs to be centralized. Once we get away from that tons of new possibilities open up.
Home batteries are expensive and take a lot of place. Also they won’t last more than a day. Imagine winter time with short cloudy days. Realistically you need at least a month worth of energy storage and even then you need sun to recharge it. They would distribute energy consumption better though by charging during night.
We have all the technology for energy storage we need, it just needs to be built. Theres gravity storage like pumped hydro, pressure storage, thermal storage, flywheels.
Well, no. Sadly we don’t. At least not in the range needed. All of these require either specific geographic relief, something really huge, too expensive or combination. Perhaps the most promising is the green hydrogen, but then again, we have yet to see it at such scale. I’d love to be wrong, though.
Solartards don’t realise that the problem with solar is storage and sun availability. It’s a fantastic idea on paper but unless you’re in an tropical country, good luck surviving winters.
we’ve had grid scale storage for a long time now. storing energy for things like cars needed new technology for weight concerns, but for electrical utilities? You lift a weight upwards with an electric motor during peak times, and let the weight down to spin a generator when you need it. It’s been in application with pumped hydro storage for a while.
There are plausible technical designs to make huge batteries out of dirt / dirt cheap materials (e.g. liquid metal battery but there are others). I wonder how that compares to building other power plants. The problem is that humanity is just too stupid to live.