[T]he report’s executive summary certainly gets to the heart of their findings.

“The rhetoric from small modular reactor (SMR) advocates is loud and persistent: This time will be different because the cost overruns and schedule delays that have plagued large reactor construction projects will not be repeated with the new designs,” says the report. “But the few SMRs that have been built (or have been started) paint a different picture – one that looks startlingly similar to the past. Significant construction delays are still the norm and costs have continued to climb.”

-5 points
*

Edit: Changed introductory wording to be less belligerent. I am sorry if I have caused a significant level of offense.

Just wait for the nuclear shills to flood in and claim that nuclear fission is a sustainable and necessary form of power generation. Some people claim that nuclear fission is a sustainable and necessary form of power generation. It is not. Uranium extraction devastates entire landscapes, the construction of nuclear power plants is too expensive (even for SMRs, as the article explains), ergo electricity prices will climb, it is a hugely wasteful use of so many tonnes of concrete (concrete manufacturing is heavy on the environment too), it creates waste that will still haunt us for hundreds of thousands of years (finding geological structures that are guaranteed to be stable that long is difficult), and relative to the initial construction and set-up effort, they don’t provide that much energy. We already have methods that can provide us plenty enough electricity that are entirely sustainable by leveraging large-scale atmospheric aerodynamics as well as the largest nuclear fusion reactor at our disposal (the sun). There’s simply no need to go nuclear.

permalink
report
reply
48 points

I hate that the conversation is happening on these terms. I hate that we have a bunch of opinionated online “teams” on this issue.

Hey, you know what we need? All of it. Any sort of energy generation that lowers atmospheric emissions in any way we do need. The concept of “nuclear shills” shouldn’t exist, the concept of “solar shills” or “hydrogen shills” or “fossil fuel shills” shouldn’t exist. The entire conversation is a PR battle by energy corps to get people to buy into marketing so they can get governments to back popular choices so they can get expensive contracts for large infrastructure work.

I hate that we have online keyboard warriors overrepresenting the challenges of one of the contributors to lowering emissions while underrepresenting the challenges of others. Hey, do you think nighttime generation and storage is an issue? Maybe installation costs for domestic solar generation, the state of the grid or the uneven distribution of solar power yields on different territories? Because I do.

And I do think cost and build times for nuclear generators are a problem (which makes it confusing that some countries are dismantling plants that seem to be working safely and are within their expected lifespan, but I digress).

And I do think the impact of hydroelectric power in nearby areas is a problem.

And I do think the open questions for geothermal are a problem.

And I do think the issues with cost, storage and dirty generation of hydrogen are a problem.

And I do think we should be working on all of that. At once. This isn’t kids arguing about which game console is better on the backyard, this is a massive existential issue, and would be even if we weren’t dealing with a climate change ticking bomb. This report? It’s bad news. Any report that tells us any of the ideas we have for weaning off fossil fuels is not working as well as we expected is bad news. Can we all get with that program?

permalink
report
parent
reply
6 points

The problem is that “both” isn’t a valid option unless a country has unlimited finances.

Otherwise you have to decide on what’s the most feasible option and then renewables win big time

I sometimes feel as if the current push for atomic is from the fossil-lobby as they are aware that it either works and they get 10-20 more years to sell oil until the reactors are built - and even if it doesn’t work out it still will slow down rollout of renewables

If you have 100 billion to spend on energy producing you have to choose if you want to go all-in with one source or split it up which would move the end of fossil fuels Back further

Not to mention having to buy the radioactive materials from dictatorships and having problems to cool down the reactors with rising temperatures and rivers running dry

I just don’t see how atomic isn’t a huge gamble that can backfire hard (and I’m not even talking about catastrophic events like Fukushima)

permalink
report
parent
reply
8 points
*

Most countries have unlimited finances. They only have limited real resources like labor, concrete, copper, glass, etc. The fact that we still don’t understand this and behave as if the metadata of the economy accurately describes reality puts artificial brakes on the solutions of many problems, climate being one of them.

permalink
report
parent
reply
-2 points

having to buy the radioactive materials from dictatorships

Not really, but also kinda. The biggest exporters of ore are Kazakhstan, Namibia, Canada, and Australia.

The only major producers that aren’t American puppets stripping themselves of resources to maintain western hegemony are Russia, Niger, China, and India, who total less than 15%.

I wouldn’t call Russia or India not-dictatorships, but I don’t see them using US weapons and training to put down a restive population and keep the resources and money flowing out like Kazakstan.

permalink
report
parent
reply
9 points

You keep doing the thing. The thing sucks. Please stop.

For one, no, that’s not how that works. Money is already being spent in energy generation, mostly towards oil and gas. This isn’t your weekly takeout budget.

It’s also not a race towards infinite energy where you dump money to make the infinite energy bar go up. Energy generation will continue to be costly and have problems, regardless of the mix of options chosen. There is simply no single silver bullet. Which is, presumably why we already don’t go “all-in” on one energy source, which is just about the dumbest possible plan. Energy diversification is absolutely part of this, regardless of where the majority of the output is coming from.

So please stop it. Genuinely stop it. This isn’t a zero sum game, it’s about finding the mix of energy sources that gets you less killed in the next century or so. Not finding a single source, not backing a single winning horse, not having your stupid team you support for either dumb Internet reasons or disingenuous trolling reasons win.

permalink
report
parent
reply
0 points

All good points, and I’m all for pretty much any technological research, but

And I do think cost and build times for nuclear generators are a problem

Thorium is another form of fission generation that has not been commercialized yet. In the real world, maybe it will be better, or maybe it won’t. But fission generation already takes too long to build out, so why switch lanes to a different form of fission generation that also needs more time and money to be commercialized? Nuclear uranium fission generation had its growing pains over the years, as the technology found challenges to address and areas to improve, but thorium has not yet gotten far enough to run into those so there will be additional challenges requiring time, money, further development

If those were decades ago when the future was bright for fission technology, I’d be all over this. However the future is dark and cloudy for fission generation, nightfall may be approaching. The advantages of thorium are not enough to shine a new light, there’s not enough room for improvement to save fission generation, this is just an expensive detour.

permalink
report
parent
reply
2 points

This is nonsense. Like someone else said we will need some kind of nuclear power for future space exploration. There are parts of the world that are dark for six months of the year, and plenty of places that don’t get enough light for solar to be practical.

Most renewable sources are not consistent enough to be used by themselves, and battery storage isn’t practical with current technology. Then there are the concerns with hydro power and biomass and how that affects the environment. I have even been told by leftists that biomass shouldn’t be installed as it destroys too many native forests.

Of course the actual best solution is one we don’t have the technology for yet: things like nuclear fusion or neutrino capture.

permalink
report
parent
reply
1 point

I have as much of a handle on the challenges of small thorium generators as I do on the costs and challenges of generation and containment of green hydrogen or the solutions for storage of solar power. That is to say, I know there are challenges, I roughly understand what they are and I know we don’t know how to fix them yet. At least not beyond a number of companies that have invested a lot on doing that saying they’re on track to do that and a bunch of people saying that no they aren’t.

I don’t know why I need to be “all over” any of this in any way. I know that we need to solve the challenges on multiple of those technologies, and we need it for ten years ago. The reasonable approach seems to use all of these as they become available based on their total emissions and cost. Anything else seems like either irresponsible idle tribalism or disinformation. Hell, in any case where the least amount of emissions is fossil fuels… well, you do fossil fuels. This is not about ideology at this point.

You are still doing the thing, just like the other guys. I keep wishing people would stop doing the thing.

permalink
report
parent
reply
7 points

ricdeh 4 points 58 minutes ago* (last edited 56 minutes ago)

Just wait for the nuclear shills to flood in and claim that nuclear fission is a sustainable and necessary form of power generation. No, it is not. Uranium extraction devastates entire landscapes, the construction of nuclear power plants is too expensive (even for SMRs, as the article explains), ergo electricity prices will climb, it is a hugely wasteful use of so many tonnes of concrete (concrete manufacturing is heavy on the environment too), it creates waste that will still haunt us for hundreds of thousands of years (finding geological structures that are guaranteed to be stable that long is difficult), and relative to the initial construction and set-up effort, they don’t provide that much energy. We already have methods that can provide us plenty enough electricity that are entirely sustainable by leveraging large-scale atmospheric aerodynamics as well as the largest nuclear fusion reactor at our disposal (the sun). There’s simply no need to go nuclear.

Brought to you by fossil fuel propaganda filtered through renewable resource advocates who would also lose out to nuclear energy.

permalink
report
parent
reply
-4 points

It’s not because of smr, it’s just that all large projects have this level of corruption and grift.

permalink
report
reply
10 points
*

all large projects have this level of corruption and grift

Skill issue. I can’t even blame capitalism, since the french manage to get almost 90% of their power from nuclear.

China has 53 GW installed, 25 GW under construction, and another 47 GW planned. Generally they’re pretty clear-eyed when it comes to major projects like this, so I think we can infer the availability of cheap hydro and solar doesn’t favor doing more than ~15% nuclear since they’re only planning to increase it by 150% over the next couple decades.

Maybe that will change when they set up long term storage/reprocessing.

permalink
report
parent
reply
12 points

IIRC the French reactors are all nearing their end of service life and’ll be decommissioned soon.

permalink
report
parent
reply
3 points

Surely you made a typo? 50 MW is a tenth of the electrical yield of the smallest PWR you can profitably operate.

permalink
report
parent
reply
5 points

Off by a factor of 1000. That’s why I’m not a nuclear engineer.

permalink
report
parent
reply
4 points

Why can’t we switch to thorium and molten salt instead? Much cleaner, much safer, same idea.

permalink
report
reply
39 points

Because it is actually not that simple, especially on the “cleaner” and “safer” parts.

permalink
report
parent
reply
6 points
Deleted by creator
permalink
report
parent
reply
4 points
*

Sorry, can’t find the stuff I read about it a while back when I was interested about it, or was it a YouTube video?

Anyway, here is what I remember: having the radioactive fuel as a liquid makes it easier to leak, and once that’s happened, the environment damage will spread faster to ground water. Also sodium salt is liquid at high temperature, at which it will spontaneously catch fire in contact with oxygen (air), so any leak will cause a catastrophic fire, and this is what caused the demise of the French prototype “Projet Phénix” in the 70s.

permalink
report
parent
reply
9 points

Wikipedia has a good discussion, if you don’t need technical detail. They’re fairly optimistic, but do note difficulties. It actually looks more positive than I expected, with the number of demonstration reactors in the last decade or so. Note: “demonstration”. I don’t think there’s anything actually blocking use of Thorium, but some unresolved issues for commercialization, plus it’s not clear the actual results are better, or that nuclear is any longer a good place to invest. It’s more of: at this point, why would you go down that road?

https://en.wikipedia.org/wiki/Thorium-based_nuclear_power

permalink
report
parent
reply
2 points

Theoretically the main advantage of the thorium is precisely because its safer and cleaner. When removed from its neutron source thorium quickly ceases fission and decay.

permalink
report
parent
reply
12 points

“Theoretically” is worth very little. It is pretty much the same for every concept NPP, that once construction starts on an actual practical plant, ugly problems start coming up all over the place that were not considered or thought of in the concept stage. Corrosion is one of the biggest ones.

See also the Rickover memo.

permalink
report
parent
reply
24 points

The technology doesn’t exist in a commercially viable form. That’s why.

permalink
report
parent
reply
3 points

And even more expensive, no?

permalink
report
parent
reply
2 points

I didn’t think that was ready for commercialize yet. You have all the disadvantages of nuclear, but need additional development costs, need to implement a supply chain, then build out a new technology that is less efficient than existing nuclear, has unclear service life, may be supplanted by fusion or renewables, and you can still use it to make bomb material. Seems like a poor idea and a waste of money.

From India’s perspective, they’d get to lead in a new technology, where they have huge reserves of fuel, and cheap labor to scale up to a billion energy-starved citizens …. And if it helped increase their nuclear weapons stock in the face of tight controls on plutonium, so much the better

permalink
report
parent
reply
1 point

What makes you think it’s less efficient. Normally high temperature reactor technology is more efficient not less.

permalink
report
parent
reply
-1 points
*

I’m not claiming to be any more knowledgeable than what I read here, but Wikipedia says

https://en.wikipedia.org/wiki/Thorium-based_nuclear_power

In 1973, however, the US government settled on uranium technology and largely discontinued thorium-related nuclear research. The reasons were that uranium-fuelled reactors were more efficient, the research was proven and thorium’s breeding ratio was thought insufficient to produce enough fuel to support development of a commercial nuclear industry

permalink
report
parent
reply
6 points

Containing it for a while seems to be super hard. It’s really corrosive to most anything that can withstand the heat and pressure. Basically, they haven’t managed to make plumbing that works for it. Liquid salt gets mad at shit all the time.

permalink
report
parent
reply
29 points

Does anyone know about the technology that nuclear submarines and aircraft carriers use? Why are they able to operate but we can’t use the same technology on land?

permalink
report
reply
40 points

Because if the military wants something, budgets are big. And they do not need to make money.

permalink
report
parent
reply
18 points

Military expenses, the only socialism acceptable to Americans.

permalink
report
parent
reply
9 points

Gotta love how the post office is legally required to show they can turn a profit, but the military has a history of building literal burn pits that essentially burn US tax dollars by lighting equipment on fire and giving soldiers cancer.

permalink
report
parent
reply
28 points

Because military engineers overengineer these things from the most expensive materials available, and they also perform frequent maintenance on them, which is also expensive.

permalink
report
parent
reply
20 points

To add to this: A certain type of Soviet submarine used a lead-bismuth alloy as coolant for their reactor. The coolant solidifies at ambient temperature so it had to be heated indefinitely by some way or another or else it solidified and trashed the reactor. I don’t think any of them exist anymore since Russia wasn’t able to afford sustaining the giant navy after the Soviet collapse.

Just goes to show how insane nuclear submarine engineering is, or was at some point.

permalink
report
parent
reply
13 points

Why are they able to operate but we can’t use the same technology on land?

Military budgets. You can use the tech, but no civilian can afford it.

permalink
report
parent
reply
11 points
*

They used pressurised water reactors with enriched uranium. Dunno how the costs run but there is no strategic alternative anyway. They also wouldn’t want such highly enriched uranium to be commonplace.

permalink
report
parent
reply
3 points

And cost isn’t really an issue for militaries, while it absolutely is for civilians.

permalink
report
parent
reply
-2 points
*
Deleted by creator
permalink
report
parent
reply
11 points

I’m pretty sure they essentially are “one time use” only.

Extremely simplified:

They run for 20-30 years without refueling, which means the reactors/system could be built more compact, a higher level of safety and require less maintenance / monitoring / fine-tuning.

All those parameters are connected in an equation which means if you want higher safety you have to make another parameter “worse”. By making the system “one time use” you set the “refuelability” and “repairability” parameters to the lowest and can therefore up the other parameters.

Also, military requirements are very different from civilian.

permalink
report
parent
reply
57 points

I was a nuclear operator in the Navy. Here are the actual reasons:

  1. The designs are classified US military assets
  2. They are not refuleable
  3. They only come in 2 “sizes”: aircraft carrier and submarine
  4. They are not scaleable. You can just make a reactor 2x as big
  5. They require as much down time as up time
  6. They are outdated
  7. The military won’t let you interrupt their supply chain to make civilian reactors
  8. New designs over promise and underdeliver
  9. They are optimized for erratic operations (combat) not steady state (normal power loads)
  10. They are engineered assuming they have infinite sea water available for everything

There’s more but that’s just off the top of my head

permalink
report
parent
reply
2 points

Because if the electricity produced on these vessels was ten times the normal price, it would still be peanuts in the grand scheme of things.

permalink
report
parent
reply
9 points

It’s expensive in subs too

permalink
report
parent
reply
7 points

I’m pretty sure most military reactors use weapons grade uranium that’s enriched to mid 90%. Countries get sensitive when you start enriching uranium to the mid 90s.

permalink
report
parent
reply
89 points
Deleted by creator
permalink
report
reply
32 points
*

Nuclear technologies missed their window. The use cases where they are the best technical solution now are extremely limited, and that means you can get the investment going to improve them.

It’s a curiosity now.

There’s an alternative timeline where Chernobyl doesn’t happen and we decarbonize by leaning on nuclear in the nineties, then transition to renewables about now. But that’s not our timeline. And if it were, it would be in the past now.

permalink
report
parent
reply
36 points

From where I stand you couldn’t be further from the reality of the situation.

Nuclear has a number of advantages from low carbon output per kilowatt over lifetime as well as being extremely cheap per kilowatt.

But the real advantage being overlooked is the small foot print and land use compared to other forms power generation. A nuclear reactor is ideal for high density population areas, adding no pollution like fossil fuels and using a fraction of the land that renewables require. And there is room for overlap between renewables and nuclear as well, meaning days where wind or solar would produce more power than usual, its easy to scale back solar production to take advantage of cheaper power, and vice versa for times when renewables aren’t going to generate enough to meet demand nuclear can increase their output relatively quickly and effectively.

The future of nuclear is however one of the most important. We are eventually going to be spending humans to other planets, and having mature, efficient and compact forms of power generation with long lifetimes and minimal start up power from idle states is going to be important, solar gets less effective the further from the sun we get, you can’t stick a wind turbine on a space craft and expect good results, and you’re out of your mind if you want to burn fossil fuels in an oxygen limited environment.

Treating nuclear as more than a curiosity but rather as the genuine lifeline and corner stone of our futures and future generations is significantly more important than fossil fuel profits today and all their propaganda.

permalink
report
parent
reply
40 points
*

as well as being extremely cheap per kilowatt.

What? How? Far as i know it’s the most expensive, with a lot of hidden costs.

permalink
report
parent
reply
26 points
*

Extremely cheap per kilowatt? Every statistic out there that I’ve seen and that includes government funding, as well as construction and deconstruction costs, paints a different picture. Nuclear is only competitive with coal or the relatively underdeveloped solar thermal.

In 2017 the US EIA published figures for the average levelized costs per unit of output (LCOE) for generating technologies to be brought online in 2022, as modelled for its Annual Energy Outlook. These show: advanced nuclear, 9.9 ¢/kWh; natural gas, 5.7-10.9 ¢/kWh (depending on technology); and coal with 90% carbon sequestration, 12.3 ¢/kWh (rising to 14 ¢/kWh at 30%). Among the non-dispatchable technologies, LCOE estimates vary widely: wind onshore, 5.2 ¢/kWh; solar PV, 6.7 ¢/kWh; offshore wind, 14.6 ¢/kWh; and solar thermal, 18.4 ¢/kWh.

Emphasis mine, source: https://world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power

permalink
report
parent
reply
8 points

The real advantage of nuclear is it’s constant output of power compared to the variable output of solar and wind

permalink
report
parent
reply
-4 points
*
Deleted by creator
permalink
report
parent
reply
3 points

The space based nukes paragraph is irrelevant. While I agree with the point thtat it may not only be useful for long term space habitation, it may be required, I don’t see what that has to do with earth based commercial power generation. They’re very different beasts with little overlap. That’s like saying you support corn based subsidies, because we’ll have to grow crops off world: true but not relevant.

permalink
report
parent
reply
-5 points

Are you German? That’s standard German rethoric and the reason, they shut off their reactors prematurely. It’s not how the world sees it though.

permalink
report
parent
reply
8 points

No. I’m not German. We run our reactors as long as possible because free money is free money ;)

permalink
report
parent
reply
23 points

You are on a nuke loving platform and people are going to downvote anything that isn’t hard pro nuke. But you are correct. I have had this exact same discussion before. The numbers you are looking for are called the LCOE, or the ‘levelized cost of electricity’ where the lifetime of the technology cost if factored in. Offshore wind is currently the lowest followed by solar. Nuke is clost to 10x the cost. There is even an international nuke consortium that has several reports agreeing with exactly what you are saying and basically sum it up as: if you invested in nuke early, then it is cost efficient to just keep upgrading. If you didn’t invest in it early, then the cost to implement it so high that you are better off going wind/solar. Even if you add in the cost of battery systems, it is still cheaper than building a new nuke plant. And more than that, with these new nuke plants you have to upgrade all your infrastructure because your old wires can’t handle the output loads. If you look at the 30+ billion Georgia spent on this plant, they could have simply given out a micro generation grant to everyone to add solar to their roofs, not needed to upgrade the lines, and been far better off. But hey, just like reddit, if you are commenting on lemmy you better be pro nuke only and ignore the other numbers.

permalink
report
parent
reply
52 points
*

I disagree, a bit.

Base load is still hard to get with renewables, unless you can get a somewhat consistent level of power from them. That’s basically just hydro/tidal and geothermal at this point, and all of those have very limited areas where they can be used.

Nuclear, on the other hand, can be built anywhere except my backyard.

We have four choices:

  • Discover/build another form of consistent renewable energy (what’s left? Dyson sphere?)
  • Up our storage game, big time (hydrostatic batteries, flywheel farms, lithium, hydrogen, whatever, just somewhere to put all this extra green energy)
  • Embrace nuclear
  • Clutch on to fossil fuels until we all boil/choke.

We can do all of them concurrently, provided there’s money for it, but we only give money to the last one.

permalink
report
parent
reply
17 points
*

Exactly. I live in Utah, which is perfect for nuclear:

  • desert close by with a mountain between the desert and dense population
  • lots of coal power, and unique air quality concerns due to inversion
  • perfectly set up for mass transit - about half (more than half?) of the population lives in a narrow corridor, so cars could be replaced with electric trains and buses
  • no access to the ocean, geothermal is probably expensive due to hard rock, no tides, hydro couldn’t be done at scale, cold winters make battery storage hard, etc

So why don’t we do it? FUD. We should have a nuclear base with solar and wind helping out, but instead we have a coal base and are transitioning to natural gas. That’s dumb. And it’s hilarious because we sell electricity to California when their backbone isn’t sufficient.

It’s probably not the best option everywhere, but it’s a really good option in many areas.

permalink
report
parent
reply
7 points

“Base load” is not that much. Off shore wind is almost always blowing, and all the other renewables can be stored via batteries or hydrogen (or tanks, in case of biogas). Yes, that’s a whole lot of stuff, but the technology exists, can be produced on large scale and (most importantly) doesn’t cause any path dependencies.

Nuclear is extremely expensive, as the article highlighted. And to be cost effective, power has to be produced more or less constantly. Having a nuclear power plant just for the few hours at night when wind and sun don’t work is insane - and insanely expensive.

permalink
report
parent
reply
6 points

Up our storage game, big time

I think this can be expanded out a bit, to the more generalizable case of matching generation to demand. Yes, storage can be a big part of that.

But another solution along the same lines may be demand shifting, which in many ways, relies on storage (charging car batteries, reheating water tanks or even molten salt only when supply is plentiful. And some of that might not be storage, per se, but creating the useful output of something that actually requires a lot of power: timing out industrial processes or data center computational tasks based on the availability of excess electrical power.

Similarly, improvements in transmission across wide geographical areas can better match supply to demand. The energy can still be used in real time, but a robust enough transmission network can get the power from the place that happens to have good generation conditions at that time to the place that actually wants to use that power.

There’s a lot of improvement to be made in simply better matching supply and demand. And improvements there might justify intentional overbuilding, where generators know that they’ll need to curtail generation during periods where there’s more supply than demand.

And with better transmission, then existing nuclear plants might be able to act as dispatchable backup power rather than the primary, and therefore serve a larger market.

permalink
report
parent
reply
0 points

So how much would it cost to do geothermal to power a city? It must be wildly infeasible if I’ve never even heard it mentioned. Can significant electric generation be had from that?

permalink
report
parent
reply
6 points
*

Base load is not necessary. It was made because you could build certain types of plants really cheap if they’re run all the time at the same level. They aren’t a requirement, but rather an economic convenience in an old way of doing things.

Renewables with storage are able to match demand more closely than traditional plants ever could. This results in less wasted power. That means we don’t have to replace every GWh of traditional generation with a GWh of renewable.

Hydro and geothermal have both had some interesting breakthroughs the last few years. Small scale hydro can get useful amounts of power from smaller rivers than was feasible in the past. There are places to put them we didn’t have before.

There’s also high voltage DC lines. The longest deployed one is currently in Brazil, and is about 1500 miles. An equivalent run in the US would mean wind farms in Kansas could power New York, or solar in Arizona could power Chicago. When you can transmit that far, then the wind is always blowing somewhere, and it’s sunny somewhere for the entire day, as well.

Nuclear lost its window of opportunity. It may already be cost competitive with putting solar panels in space.

Edit: fixing autocorrect’s bad corrections

permalink
report
parent
reply
5 points

So, essentially, nuclear power is like airships, except with worse disasters?

permalink
report
parent
reply
6 points
*

More people died in airship incidents than in civil nuclear power.

E: typo

permalink
report
parent
reply

Technology

!technology@lemmy.world

Create post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


Community stats

  • 16K

    Monthly active users

  • 12K

    Posts

  • 553K

    Comments